
Python Textbook

Python Textbook

DR. MARK TERWILLIGER

Python Textbook Copyright © 2022 by Dr. Mark Terwilliger is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License,
except where otherwise noted.

https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Part I. Main Body

1. Chapter 1: Introduction 1

2. Chapter 2: Python Basics 14

3. Chapter 3: Numeric Data 26

4. Chapter 4: Strings 38

5. Chapter 5: Printing 47

6. Chapter 6: Selection 57

7. Chapter 7: Repetition 74

8. Chapter 8: User-defined Functions 91

9. Chapter 9: Lists and Dictionaries 99

10. Chapter 10: Data Files 113

11. Chapter 11: Making Computer Games 125

12. Chapter 12: Turtle Graphics 139

13. Chapter 13: Graphical User Interfaces using
Tkinter

149

14. Chapter 14: Web Applications using Server-Side
Scripting

162

1. Chapter 1: Introduction

Chapter 1

INTRODUCTION

Topics Covered:

• Benefits of coding
• Computer basics
• Algorithms
• Flowcharts
• Programming

Chapter 1: Introduction | 1

“Everybody should learn to program a computer, because it teaches
you how to think.”

– Steve Jobs, Apple founder

Benefits of Coding
Why should I learn to code? If you are not planning to be a

software developer, this is a reasonable question. If you are a
business student or a psychology major it may be difficult to see
how coding fits into your career plans. The goal of this book is to
help you understand how learning to code is a skill that will help you
in any career. Through learning to code you will no longer only be
a computer user; you will become a coding Jedi with the ability to
command the computer to obey your will.

Benefits of learning to code include:

1. You can become a better problem solver: Employers in every

2 | Chapter 1: Introduction

industry consistently rank problem solving as the most desired
skill for new hires. Coding helps you to become a better
problem solver by teaching you to break down problems into a
logical and structured format. In addition, it’s often necessary
to find creative problem solutions that are different than
anything that’s been done before. This analytical process will
come in handy whenever you need those skills to tackle a
challenging problem at work or in your daily life.

2. You may need to code in your job: It doesn’t matter if you are a
scientist in a research lab or a financial planner working in an
office; there may come a time when you need to write code.
You may need to solve a small task that your current software
cannot perform. Sometimes the need to code shows up in a
surprising context. Creating database queries and spreadsheet
macros are essentially instances of coding. With your
newfound programming skills, you will be able to write a
program to solve that task and impress your boss.

3. You can develop a basic understanding of how software
works: In virtually every career, you will be working with
technology and software on a daily basis. Once you have
written programs yourself, you will gain an appreciation and
understanding of how software works. You will gain insights
into what features can be better exploited and be able to
identify deficiencies or limitations in the programs that you are
using.

4. You can learn to be persistent: Albert Einstein famously stated,
“It’s not that I’m so smart, I just stay with problems longer.”
Coding helps you learn to be persistent when facing difficult
problems. You may get stuck and hit roadblocks on your
journey, but the satisfaction of sticking with it and finding a
solution is worth the effort. It takes persistence to be
successful in almost any endeavor, and coding helps you learn
persistence.

5. You can communicate about technology effectively: Learning
the basics of programming will be helpful in job situations

Chapter 1: Introduction | 3

where a non-techie will need to talk to someone in the
computing field. There are so many terms and phrases that you
will pick up while learning to program. You won’t have to speak
the techie language perfectly, but you will know enough to pick
up on important conversations among computing
professionals, especially if you are working with software
developers.

Although this book will focus on all of these coding benefits, in
this chapter, we will discuss a few problem-solving tools. Before
we do that, though, it’s important that you are familiar with some
computer basics.

Computer Basics
Before we begin our journey to coding Jedi, we need to make sure

we have a basic understanding of how computers work. Computers
are constructed from hardware and software. The hardware makes
up the physical components of a computer. Most general-purpose
computers consist of four parts: (1) the Central Processing Unit
(CPU) or processor, (2) memory or Random Access Memory (RAM),
(3) inputs like a keyboard or mouse, and (4) outputs like a monitor or
printer.

Figure 1.1: The von Neumann computer architecture.

4 | Chapter 1: Introduction

The software is the computer programs. This consists of both the
operating system (Windows, Macintosh, Linux, etc.) and the
applications (word processor, spreadsheet, games, web browser,
etc.).

As illustrated in the previous figure, most computers today use
the von Neumann architecture. This means that programs and data
are loaded into RAM before a program runs. When you double-click
on a program icon to run a program, you may notice a slight delay
before your program appears. That is your computer loading the
program and any necessary data from the external storage into the
internal memory unit.

When we create software, most of the time our programs will
follow the data processing cycle. This consists of three stages: (1)
input, (2) processing, and (3) output. This cycle is illustrated below.

Figure 1.2: The Data Processing Cycle.

Two of the primary tools that programmers rely on when

developing solutions are algorithms and flowcharts. We will discuss
each of these tools and explain how they can be used to help solve
problems, as well as help simplify the coding process.

Algorithms
An algorithm is a set of general steps to solve a problem. We

encounter algorithms frequently in our everyday lives. As we drive
to school, we are following an algorithm (turn right, go 1.5 miles,
turn left at the second light, etc.). When we get home and decide to
treat ourselves by baking a cake (beat two eggs, add one cup of flour,
add one tablespoon of salt, stir vigorously, etc.), we are following an
algorithm.

Let’s take a look at an example. Suppose you have a parent that is
constantly yelling at you because you leave your bedroom lamp on.
Maybe you are curious as to how much that is actually increasing

Chapter 1: Introduction | 5

the monthly electricity bill. You decide to write an algorithm that
will solve this problem.

With a little digging on the Internet, you discover that in order to
find the cost of electricity, you will need to know three things: (1)
the wattage of your light bulb, (2) how many hours did you leave it
on, and (3) the price that your electric company charges. You also
discover that to compute this cost, you simply multiply the wattage
by the hours, then divide that by 1,000 times the price of electricity.
You divide by 1000 since electric companies charge by center per
kilowatt-hours, and we are asking the user to enter the time in
hours. Therefore, your algorithm ends up looking like this:

Algorithm for computing cost of electricity:

• Have the user input wattage, hours, price

◦ cost = (wattage x hours) / (1000 x price)

◦ Output cost

Algorithms for computer programs need to be a lot more precise
than algorithms for people. For example, many shampoo bottles will
include the following “algorithm:”

a) Wet your hair
b) Apply a small amount of shampoo
c) Lather
d) Rinse
e) Repeat
A computer program would need to clarify – “How do you wet

your hair?” “What is a small amount of shampoo?” “How do you
lather?” And most importantly, only repeat one time! Computers are
way too literal and need extremely detailed instructions.

For a list of steps to be considered an algorithm, it must have the
following five characteristics:

1. Inputs – zero or more well-defined data items that must be
provided to the algorithm

2. Outputs – one or more well-defined results produced by the

6 | Chapter 1: Introduction

algorithm
3. Definiteness – the algorithm must specify every step and the

order the steps must be taken in the process
4. Effectiveness – every step must be feasible. You couldn’t have

a step, for example, that said “list every prime number”
5. Finiteness – the algorithm must eventually stop

Flowchart
A flowchart is a visual representation of a problem solution.

Different shapes in a flowchart have different meanings. Arrows,
or arcs, connect the shapes and provide the flow of control for
your problem solution. The following table illustrates the meaning
of some of the more commonly used flowchart shapes.

Shape picture Shape Name Shape Purpose

Ellipse Start/End

Parallelogram Inputs/Outputs

Rectangle Formulas/
Actions

Diamond Decisions

Table 1.1: Common Flowchart symbols.

Chapter 1: Introduction | 7

Going back to the problem of computing the electricity, let’s take

a look at those steps expressed using a flowchart. There are many
tools for creating a flowchart. We recommend using the free web
http://draw.io to build your flowcharts.

8 | Chapter 1: Introduction

Chapter 1: Introduction | 9

Figure 1.3: Flowchart to compute the cost of electricity.

What is Computer Programming?
A computer, in its simplest form, is nothing more than a collection

of silicon, plastic, metal, glass, and wire. When you turn it on, it
does precisely what it’s been instructed to do – nothing more and
nothing less. That’s where programming comes in. A program is a
set of instructions that tell the computer what it’s supposed to
do; programming is the process of preparing these instructions.
Because computers interpret their programs very literally,
programmers need to be quite explicit in the directions that they
prepare.

The Origins of Programming
Since the first computers were developed in the 1940s, the

discipline of computer programming has undergone a continuous
evolution. In those days, computers were often programmed by
means of large patch panels, using wires to represent individual
instructions. Early on, though, it was recognized that flexibility
would be increased if computer programs could instead be encoded
as numeric data and stored in the computer’s memory. While an
improvement over patch panels, these machine language programs
were still difficult to work with. Even then, most computers used
binary numbers, and the machine language programs were nothing
more than strings of zeros and ones.

To streamline the programmer’s job, special assembly
languages were developed. Rather than having to remember, for
example, that the binary pattern 00101010 is the instruction that
tells the computer to add two values, while the pattern 00101011
stands for subtract, the assembly language programmer uses special
mnemonic names, such as ADD or SUB. In addition, assembly
languages introduced the concept of using labels to stand for
addresses within the computer’s memory. Thus, the instruction:

ADD A,B

10 | Chapter 1: Introduction

might be used to tell the computer to add the values in memory
locations 123 and 147, rather than the binary form:

00101010 01111011 10010011
Of course, the computer didn’t, and still doesn’t, understand

assembly language directly. Instead, special programs, called
assemblers, were (and are) used to translate assembly language to
its binary equivalent.

Although assembly language programming is still an option with
computer systems, it’s used only sparingly, primarily for performing
very low-level tasks where direct communication with the
computer’s hardware is required. Most programming is instead
done using more sophisticated languages. This is because assembly
language is still quite difficult to work with, requiring even the
simplest tasks to be broken down into sequences of several, or even
several hundred, instructions. Also, virtually every computer system
has its own unique assembly language. To run an existing assembly
language program on a new computer system requires translation
of the program into the new system’s assembly language – often a
formidable task.

The Development of High-Level Languages
High-level programming languages were first introduced in the

1950s. Whereas each instruction in an assembly language
represents a single machine language instruction, a single high-
level language instruction will usually translate into several machine
language instructions. This implies, of course, that high-level
languages are far more expressive than assembly languages. It also
implies that the translation process required to convert programs
written in these languages into a form that the computer can
process is far more complex.

There are two strategies for translating high-level languages. The
first, software called a compiler translates programs fully into
machine language. Once translated, the compiled program can be
run at any time without any additional translation required. In
contrast, other languages are interpretive. When a program written
in an interpretive language is run, an interpreter program reads one

Chapter 1: Introduction | 11

instruction at a time, and determines how to carry out the required
action.

To better understand the difference between compiling and
interpreting, imagine that you have an article written in a foreign
language. You could hire someone to translate the article to English
and give you a written copy of this translation. This is what a
compiler does. Alternatively, you could hire someone to read the
article aloud, translating it to English as they read. This is what an
interpreter does. Notice the important difference between these
two approaches. When the article is “compiled” for you, you can
refer back to the translated version at any time; the “interpreted”
version, however, is not retained, and you’d need to seek out your
interpreter again if you want to review the article’s contents.

There are literally hundreds of different high-level programming
languages. When first learning to program, one of the first
challenges is the selection of an appropriate language. The TIOBE
(The Importance Of Being Earnest) index is a measure of the
popularity of programming languages. This list gets updated
monthly, but here is a recent glimpse of the top ten high-level,
general-purpose languages:

1. C
2. Java
3. Python
4. C++
5. C#
6. Visual Basic
7. JavaScript
8. PHP
9. Go

10. R

For this book, we have chosen the Python programming language.
In Chapter Two, we will explain why Python is a great choice for
learning to code. We will also show you how to download and install

12 | Chapter 1: Introduction

Python for free in just a matter of minutes. Before you know it, you
will be writing your first programs.

Chapter Review Exercises:
1.1. Describe five benefits for a person not working in a computing

career to learn how to code.
1.2. Explain the function of each of the following flowchart shapes:

a. Arrow
b. Diamond
c. Ellipse
d. Parallelogram
e. Rectangle

Programming Projects:
1.1. Answer the following questions about algorithms:

a. Give the steps for withdrawing money from an ATM.
b. Explain how your steps for part (a) meet all five of the essential

characteristics for an algorithm.
c. Develop an algorithm for subtracting two 3-digit numbers.
d. Explain how your steps for part (c) meet all five of the essential

characteristics for an algorithm.
e. Create an algorithm for another common, everyday task you

are familiar with.
f. Explain how your algorithm for part (e) meets all five of the

essential characteristics for an algorithm.

Chapter 1: Introduction | 13

2. Chapter 2: Python Basics

PYTHON BASICS

Topics Covered:

• Python overview
• Download Python
• Creating our first program
• Saving and running a program

14 | Chapter 2: Python Basics

“I use Python almost regularly at my job. I have used it for forecasting
time series data to estimate staffing requirements and various other
business metrics. I have also used it to automate an ETL process by
using Pandas to break contents of a large excel file into smaller excel
files by categories. This was a huge time saver.”

– Ali Murad, Financial Analyst, University of North Alabama
Graduate

Python Overview
In this book we use Python as the introductory programming

language. One of the primary reasons we chose Python is because
it is considered an easy to learn language. The designer of the

Chapter 2: Python Basics | 15

language emphasized code readability. This is an important feature
of a language since it makes the code easier to understand.

In addition to being a great language for beginners, Python is also
a very powerful language. It is used in a broad range of applications,
including Geographic Information Systems (GIS), artificial
intelligence (AI), visualization, machine learning, and robotics.

Python is an object-oriented language, which means your program
data is stored as objects that have properties and functions. Most
modern programming languages, such as C++, Java, and Visual Basic,
are object-oriented.

Finally, as we saw in the chapter one, Python is one of the most
popular programming languages today according to the TIOBE
index. Knowing a language that is popular is helpful, since an
employer is more apt to value someone having that skill. Also, the
resources to learn Python, including books, web sites, tutorials, and
videos, are plentiful.

Python uses an interpreter to translate your high-level code into
a form that the CPU can understand and execute. Python is an open
source language. This means that you can not only download it for
free but can even view and modify the code used to create the
Python interpreter. The language is also portable, which means
the code that you write in one operating system (Windows, Mac,
Linux) will work in another. This is a major advantage of using
an interpreter rather than a compiler, since interpreted languages
don’t need to be translated into a specific computer’s machine code.

There are two versions of Python, 2.X and 3.X, that are common
in use today. These versions are not backward compatible. That is,
if you are using version 3 of Python and try to run a program that
works in version 2, it may not work. In this book, we will be using
the version 3. This is an unusual circumstance; historically, most
programming languages tried to maintain backward compatibility
so that existing programs would not need to be modified when
updates were made to the language features.

Download Python
As mentioned earlier, Python is free. To download Python to your

16 | Chapter 2: Python Basics

own computer, you must first visit the official website at
http://python.org. The top of the Python main web page looks like
this (at least until the next language update arrives!):

Figure 2.1: The Python website located at python.org.

If you scroll over the “Downloads” tab, a smaller window will

appear looking like that seen below. The web site will recognize your
computer’s operating system so you won’t have to make any difficult
decisions. Just click on the button with the current version number
(i.e., “Python 3.9.2”). Once you download the file, simply run it and
follow any instructions that pop up along the way. It should take a
couple of minutes and you’ll be ready to start coding.

Figure 2.2: Downloading Python from the python.org website.

Chapter 2: Python Basics | 17

You should notice a “Documentation” tab on this initial web page,

as well. This is where the official documentation for the Python
language resides. This page will be a good resource throughout your
programming adventures so make a note of it.

Once you have Python successfully downloaded, there are several
ways that you can write and run your Python programs. Idle is
an integrated development environment (IDE) for Python. An IDE
allows you to create, edit, run, troubleshoot, save, and open your
code all in the same easy-to-use program.

Figure 2.3: The Python Idle software.

When you open Idle for the first time, a window similar to the

one above will appear. The Python version number (In this case,
3.8.0, since the author was too lazy to update his computer to
version 3.9.2) is shown in the window title and the first line inside
the window. The Idle environment has two modes. Initially, the
environment is in interactive mode, which allows you to evaluate
expressions and individual instructions. When you want to develop
a larger program, however, you will want to switch to script mode.

The string “>>>” is the screen prompt which tells you that the
environment is waiting for you to type a Python expression or
instruction. The interactive mode can be used to play around and
just experiment with different commands. Try typing the four
expressions shown below following the prompt. You will notice that

18 | Chapter 2: Python Basics

Python uses different colors for syntax highlighting. The syntax are
the rules of the language. More about that later.

Figure 2.4: Experimenting in Interactive mode.

When you type 3+2 and press the Enter key, the result of 5 is

returned. Of course, this comes as no surprise. In the interactive
mode, the expression you enter is executed immediately. You will
notice that all of the program output is displayed by Idle as blue.
Obviously, 4*5 resulted in 20. Why did 2**5 return 32? If it isn’t
obvious, see if you can research (i.e., Google) the answer.

Whenever you want to display something in Python, you use a
special function called print. All of the built-in Python functions
appear as purple in Idle. Also note how the word “hello” appeared in
double quotes. This means it is a string, or sequence of characters.
Idle displays strings using green. The last example had a string,
followed by *, followed by a whole number. How did Python evaluate
that expression?

Chapter 2: Python Basics | 19

Creating our First Program
Most of the time, we want to write larger programs, which are

sometimes called scripts. You do not want to write a full-fledged
script using the interactive mode. Instead, go into script mode by
clicking on “File” and then “New File.” A convenient way to program
in this mode is to resize this new script window and put it in the
right side of your screen. Resize the interactive window and place it
on the left side of your screen:

Figure 2.5: Creating a new Python program.

Now, let’s get back to tackling the electricity problem from the
chapter one. In your new script window, type the following
program, replace the X’s with your name and the current date. We
will break each instruction down, line by line, afterwards.

Note: It is important that you actually type in this program to
get used to this environment of creating, editing, troubleshooting,
saving, and running programs.

20 | Chapter 2: Python Basics

Figure 2.6: The electricity program.

The lines at the top of this programming that begin with the pound
sign (#) are called comments. When the interpreter goes to translate
and run your code, it will ignore comments. These lines are added to
document your program. That is, the comments will describe your
program and various aspects of it. As a minimum, you should include
the 4-line comment block illustrated in this example.

As mentioned earlier, the print function is used to display
information to the screen. Each print statement will send an output
to a new line. With the print function, you include what you want
displayed inside parentheses. Anything inside the parentheses of
a function is called a parameter. With no parameter, the print
function simply outputs a blank line.

The input function is used to get information from the user via
the keyboard. The program will pause until the user types
information followed by the Enter key. Data will be read in as a
string and stored as a variable, which is simply a named memory
location. The parameter for the input function is a prompt that is
displayed as a hint to the user indicating what should be entered at
the keyboard.

You should notice in the program the same input statements
for wattage, hours, and price that we saw in the algorithm and
flowchart in chapter one. Since the input function returns the user’s
input as a string, we need to use the float function to convert that
string to a floating-point number. Data types will be discussed in
more detail in the upcoming chapters.

Chapter 2: Python Basics | 21

After the input instructions, we use our formula to compute the
cost of the electricity based on the values entered by the user. The
final step is to output the cost using a print statement. The print
statement uses two parameters – a string literal that functions as a
label, and the variable cost. Notice that the label has quotes around
it and the variable does not. When printing a variable, the contents
of the variable will be output, not the actual name of the variable.

Saving and Running a Program
Finally, we are ready to run the program. In Idle, click “Run”

on the menu and then “Run Module” to execute your program.
Alternatively, the “F5” function key is treated as a shortcut to trigger
this same action. When you run the program, the output and
interaction will occur in your interactive screen.

Note: Idle will force you to save your program before you run it.
All of your Python programs will end with a “.py” file extension. You
should save all of your programs to a common location that you can
access conveniently. Also, you should save using a meaningful file
name like “electricity.py”.

Now, let’s find out how much that lamp is costing the family.
Suppose your lamp uses a 75-watt bulb. A month is approximately
720 hours (24 hours per day x 30 days) so we will input 720 for the
second input. Finally, the price of electricity varies depending on
many things, including the state you live in. Suppose your electric
company charges 12.7 cents per kilowatt hour. The interaction
would like that shown:

22 | Chapter 2: Python Basics

Figure 2.7: A program interaction for the electricity program.

The program shows us that it will cost $4.25 to leave that lamp on

for a month straight. Of course, we have a lot more decimal places
than we need, but we will worry about formatting our output later.
We have a working program that solves our problem!

It is possible that your program did not run successfully. If you
mistype one or more instructions, you may have created a syntax
error, which is when one of your instructions breaks the rules of
the language. For example, suppose you forget the closing right
parenthesis at the end of the first print instruction. As shown below,
Idle will display a pop-up screen with an error message. The
position of that error will be highlighted in red in your program
code.

Figure 2.8: A syntax error.

Now that you’ve successfully created, saved, and run your first

Python program, it’s time to start digging deeper. In the chapter
three, we will discuss the most common numeric data types used in
Python programs, as well as the operations and functions associated
with each.

INTERACTIVE – Do I really need to download Python?

Chapter 2: Python Basics | 23

It is highly recommend that you follow the instructions provided
in this chapter to download Python to your computer. It is possible
to create and run Python programs using your web browser. A
website called http://trinket.io provides a full Python interpreter.
We provide this plug-in along with some instructions in our Try
Python page. You can give it a spin right now in the screen below.
After you successfully run the “hello world” program, add another
print statement to display your full name, and then run the program
again.

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=21

Chapter Review Exercises:
2.1. Define the following terms:
a) Comment b) Float c) IDE d)

Input function
e) Object-oriented f) Open source g) Parameter

h) Portable
i) Print function j) Prompt k) String

l) Syntax error

Programming Projects:
2.1. Many athletes are concerned with reaching their

ideal training heart rate during their workouts.

• The maximum heart rate (MHR) can be found by subtracting
your age from 220. It is recommended that the ideal training
heart rate for exercise is between 55 and 85 percent of this
MHR.

24 | Chapter 2: Python Basics

http://trinket.io/
https://pythontextbook.com/try-python/
https://pythontextbook.com/try-python/
https://una.pressbooks.pub/python-textbook/?p=21

• Write a program to ask a user to enter her age. Your program
will compute and display her maximum heart rate, as well as
the lower and upper range of the ideal training heart rate.

• Write an algorithm to solve the problem. Save it as a Word
document.

• Draw a flowchart to model the solution to the problem. Save it
as a PDF document.

• Implement the solution to your problem as a Python program.
Add 4 lines of comments at the top.

Chapter 2: Python Basics | 25

3. Chapter 3: Numeric Data

NUMERIC DATA

Topics Covered:

• Data types
• Numeric operators
• Precedence rules
• Assignment
• Error types

“I think that great programming is not all that dissimilar to great art.

26 | Chapter 3: Numeric Data

Once you start thinking in concepts of programming it makes you a
better person…as does learning a foreign language, as does learning
math, as does learning how to read.”

– Jack Dorsey, Twitter creator and founder and Square CEO

Data Types
Ultimately, everything that is stored within a computer’s memory

is a number. The computer’s processing unit has to decide, based on
context, what the numbers in the memory represent. If the CPU is
asked to execute the instruction at memory location 385, the CPU
assumes that the number stored in that memory location should
be treated as a machine language instruction. If that instruction at
location 385 indicates that the contents of memory location 1376
should be added to the contents of memory location 2795, then the
CPU will treat the values in those memory locations as numbers.

A major distinction between different programming languages is
the set of resources provided by that language for interpreting the
values stored in the computer’s memory. The different mechanisms
provided by the language are generally referred to as the language’s
data types.

The simplest data type supported by virtually all programming
languages is the numeric data type. Just like we recognize two kinds
of numbers, whole numbers and fractions, computers normally
distinguish between int, or whole number values, and float, or
fractional values. Technically, a float value is actually like a decimal
representation of a fraction. And just like some fractional values, like
1/3, don’t have an exact decimal representation, many float values
are actually approximations for the fractional value that is being
represented.

In practice, we will use an int when storing a whole number such
as a person’s age (i.e., 19) or golf score (i.e., 97). Float is short for
floating point number and can stores things like a grade point
average (i.e., 3.48) or a bank account balance (i.e., 578.25).

As a programmer, you have to decide on the data type as you

Chapter 3: Numeric Data | 27

anticipate how your data will processed and viewed. For example,
maybe you are writing software that will ask the user to enter
today’s temperature in Fahrenheit degrees. If you expect all input
values to be whole numbers (i.e., 72), then you would choose an int.
If a user is allowed to enter numbers with decimals (i.e., 68.45), then
a float would be the proper data type.

Numeric Operators
As you begin to solve problems, you will use numeric operators to

create formulas. The next table shows some of Python’s most
common numeric operators.

Operation Operator Python Example Result

Addition + 3+5 8

Subtraction – 14-9 5

Multiplication * 4*7 28

Floating point division / 19/4 4.75

Integer (floor) division // 19//4 4

Remainder (modulus) % 19%4 3

Exponent ** 2**5 32

Table 3.1: Python operators.

Precedence Rules
Suppose a student decided to use Python in the interactive mode

to find her average of three exam scores: 70, 80, and 90. When she
typed in the expression, the result is shown below:

Of course, that doesn’t seem right. There is a good chance you
already figured out the problem. The precedence rules (order of

28 | Chapter 3: Numeric Data

operations) you learned in your math courses apply in Python
expressions.

The precedence rules follow this order:

1. Parenthesis
2. Exponent
3. Multiplication and division (left to right)
4. Addition and subtraction (left to right)

The student’s expression had two additions and a division. Since
division has a higher precedence than addition, 90 was divided by
3 first. That quotient was then added to 70 and 80, resulting in
the 180. To force the addition to occur first, we would need to add
parenthesis since they have the highest precedent level:

When we write programs, we usually want to store or save results of
expression so that we can later use them or display them. To store
data, we use a variable, which is simply a named memory location.
Python has rules for creating variable names.

Rules for creating variable names:

• Use letters, digits, and underscores
• Variable names are case-sensitive
• Do not use reserved words

A good practice for creating a variable is to use meaningful names
like hoursWorked, firstName, and exam3. The table below provides
a list of potential variable names.

Chapter 3: Numeric Data | 29

Variable name Valid
name? Comments

City yes This is a good name

city yes Good name, too, but it is a different
variable than City

print no print is a Python function

Print yes It is valid, but may be confused with print

Hours-worked no The dash (-) is not a valid character

Hours_worked yes This is a good name

w yes It is valid, but 1-letter names should be
avoided

mph yes Valid, but milesPerHour would be much
better

input no input is a Python function

last name no You can’t have spaces in a variable name

Table 3.2: Python variable names.

Variable Assignment
To give a value to a variable you use an assignment statement.

The assignment operator is the equal sign (=). The instruction age
= 19 will assign the value 19 to the variable age. Technically, age is a
reference that identifies the memory location where your program
stored the number 19. You might picture your computer’s memory
as a bunch of cells:

30 | Chapter 3: Numeric Data

Perhaps later you decide to change the value of age, setting it to
23 with the instruction age = 23. The age variable now points to the
number 23 in memory. (Side note: The number 19 is now orphaned
and will be removed by garbage collection.) Your computer’s
memory will look like this:

Once you assign a value to a variable, you can retrieve it to use
in another formula or you may want to output it using the print
function. It’s recommended that you use the interactive mode to
experiment with assigning and printing variables. Here are a couple
of examples:

Chapter 3: Numeric Data | 31

Figure 3.1: Examples of the Python assignment operator.

Error Types
You noticed in that last example that a message popped up. Errors

show up in red when you work in Idle, so we try to avoid that
color. In this example, we tried to print the contents of a variable
named temp, but we never created or defined that variable. Python
will not permit you to access a variable if you haven’t defined it.

Every language has its own syntax, which are the rules of
language. This includes the language structure, whitespace,
reserved words, etc. If one of your instructions breaks one of these
language rules, it is called a syntax error. Unfortunately, many
beginning programmers (as well as some experienced
programmers) mistakenly believe that, once they have removed all
syntax errors, their programmers are good to go. The table below
shows three types of common programming errors. A runtime error,
such as dividing by zero or taking the square root of a negative
number, occur during program execution. With a logical error, your
program runs but the intended results or outputs are not correct.

32 | Chapter 3: Numeric Data

Type of
Error Description Examples

Syntax An instruction breaks the
rules of the language print(5 number1+number2=total

Runtime
The given data causes a
problem while your
program is running

print(10/0) math.sqrt(-25)

Logic
Your program still runs,
but the results are not
correct

Avg=exam1+exam2+exam3 /
3 triangleArea=base*height*2

Table 3.3: Programming Error Types.

Common Python Functions
As we continue to solve problems using Python, more functions

will be needed to perform necessary commands. The table below
lists a couple more common Python functions along with examples
of each in action:

Function Python Examples Result

Absolute
value abs(-23) abs(5.8) 23 5.8

int
conversion int(3.8) int(“47”) 3 47

float
conversion float(5) float(“-29.3”) 5.0 -29.3

round round(23.7) round(-5.2394) round(4.7777,1)
round(34.88888,2)

24 -5 4.8
34.89

Table 3.4: Common Python Functions.

INTERACTIVE – Debugging
Often times, we describe an error in a computer program as a bug.

The process of removing those errors is therefore called debugging.
To give you a little practice debugging, consider the program below.
It is trying to compute and display the hypotenuse of a right triangle

Chapter 3: Numeric Data | 33

given the two triangle legs inputted by the user. There are several
errors embedded in this program, though. See if you can identify
and correct each error. If you are familiar with a 3-4-5 triangle, that
would be an easy case for you to test. To begin, try simply running
the program and see what clues that gives you.

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=24

Some Example Applications
Let’s take a look at a couple of examples to see if we can tie it all

together. First, we will develop a program to compute the winning
percentage for a baseball team. The problem-solving in this example
is pretty straight-forward. As you can see from the comments, the
program is broken into input, processing, and output sections. The
team wins and losses must be converted to integers since the input
function returns a string. You might also notice that we included
the round function to display the winning percentage to the nearest
tenth.

34 | Chapter 3: Numeric Data

https://una.pressbooks.pub/python-textbook/?p=24

Figure 3.2: Baseball Winning Percentage Program.

Here is a sample run of this program. Notice that the program
output is displayed as blue, and the user input is shown in black.

You may be curious as to when we would ever need the “%” or
“//” operators. It turns out that they come in handy solving many
problems. Suppose you worked as a cashier at a store, and you
wanted to write a Python program to compute and display change
for a customer. We will first show you some code that will solve
this problem. Then, we will take a look at a sample run to help you
understand how these two numeric operators are used.

Figure 3.3: Money Changing Program.

In the sample run below, the user input 68 as the number of cents
the customer should be given. If you look at 68//25, the integer
division returns 2 as the number of quarters. The expression 68%25

Chapter 3: Numeric Data | 35

results in 18 as the remainder. Once the program computes the
quarters, it next computes dimes in a similar fashion. The
expression 18//10 results in 1 dime and the remainder 18%10 is 8.
The number of nickels is 8//5, or 1. Finally, the number of pennies is
8%5, or 3.

Chapter Review Exercises:
3.1. Show the output of the Python code.
a = 18 – 3 * 4 + 7
print (a)
3.2. Show the output of the Python code.
b = 9/5
print (b)
3.3. Show the output of the Python code.
c = 9//5
print (c)
3.4. Show the output of the Python code.
d = 17%3
print (d)
3.5. Show the output of the Python code.
e = 4**3
print (e)

Programming Projects:
3.1. If P dollars (called the principal) is invested at r% interested

compounded annually, then the future value of the investment
after n years is given by the formula:

36 | Chapter 3: Numeric Data

Write a program to ask the user for the principal, annual interest

rate given as a percentage, and the number of years of an
investment. Compute the future value and display it using 2
decimals. Also, compute the total interest earned on the investment
and display that value using 2 decimals.

Chapter 3: Numeric Data | 37

4. Chapter 4: Strings

STRINGS

Topics Covered:

• Strings
• Common String Methods
• Casting

Strings
To computer programmers, a string is simply a sequence of

characters. A specific example of one is called a string literal, and
is surrounded by quotes. Examples include “Donald Duck”,
“35630-1418”, “Florence, Alabama”, and “”. That last example, called
an empty string, has no characters. You may have also noticed the
second example had numeric digits in it. A string may contain any of

38 | Chapter 4: Strings

the printable characters you see on your keyboard, as well as some
characters that don’t show up there.

We use string variables all of the time to store data that is not
numeric. The computer stores this data in memory using an
encoding called ASCII (American Standard Code for Information
Interchange). You might visualize a string as a table, with each slot
storing a single character. Take a look at the following 11-character
string literal “Roar Lions!”:

0 1 2 3 4 5 6 7 8 9 10

R o a r L i o n s !

Figure 4.1: A Python string.

Above the table, the position of each character is shown. This
position, often called subscript or index, begins counting at zero.
While it may seem unnatural to refer to the first position in the table
as position 0, that’s a computer-related quirk you’ll see repeatedly,
for reasons that are well beyond the scope of this book. The
subscript often comes in handy when you need to process or extract
information from a string. The following example using Python’s
interactive mode illustrates this concept.

Figure 4.2: Accessing characters within a string.

Chapter 4: Strings | 39

Taking a look at this example, you should notice that Idle output the
resulting strings with single quotes. You can use single or double
quotes for strings. When displaying the 5th character – the
character in position 4 – a space is printed. You can use [m:n] to
create a substring, or slice, of a string. It returns the string that
starts at position m and ends at position n-1.

The following example shows four examples of the slice. The
first displays a string beginning at position 3 and goes up to but
does not include position 5. The second example displays
characters 7 through 10. The third example does not include an
ending number after the colon. This will display all characters at
position 3 and beyond. The final example is missing the beginning
subscript before the colon. All characters before position 5 are
displayed.

Figure 4.3: String slices.

You can use the Python len() function to determine the length of a
string. The following shows you a couple examples using len():

40 | Chapter 4: Strings

Figure 4.4: The Python len function.

Common String Methods
In chapter one, we mentioned that Python is an object-oriented

language. A data item like a string is treated as an object. This means
that in addition to storing data like “Roar Lions!”, the string object
also has built-in functions, or methods, that it can reference using
the name of the string variable followed by a period followed by the
function name. The examples below will demonstrate several of the
methods provided for string objects:

Chapter 4: Strings | 41

Figure 4.5: Python string methods.

The find message searches the string for a pattern and returns the
position where it matches. The pattern “quiz” was found at position
7. The pattern “Love” was not found so a -1 was returned. Notice that
the matching is case-sensitive.

When applied to numbers, the plus (+) operator is used to add the
two operands. You can also use this same plus operator with two
strings. It will perform string concatenation, which simply means
the strings are joined together. When a language defines an
operator to perform different functions depending on its operands,
this is called operator overloading. It’s intuitive and easy to use, as
illustrated below:

42 | Chapter 4: Strings

Figure 4.6: Combining strings with the plus (+) operator.

In the examples above, you can see how you can apply the plus
operator multiple times and it will concatenate the strings from
left to right. The example demonstrates how you could use plus
operator to combine strings and then store the result to a variable.

As previously mentioned, the input function allows the user to
enter information from the keyboard. The result is a string that
is usually assigned to a variable. Most of the time, you will want
to provide a prompt as a parameter to the function so that the
user knows that your program is waiting for some input. Here is an
example that shows a few examples:

Figure 4.7: Getting string input from the user.

A sample run of that code is shown next:

Chapter 4: Strings | 43

Figure 4.8: Program interaction.

Casting
In the previous example, all of the input values were used as

strings. When we need the user to enter a number that will be used
in an arithmetic expression, we need to use type casting, which is
converting from one type to another. Here are a couple of examples
from the interactive window that demonstrate type casting:

Figure 4.9: Examples of casting.

INTERACTIVE – Fun with strings
Try out the program below to learn more about strings and the

44 | Chapter 4: Strings

string slicing function. Experiment with different inputs and try to
predict the output before you run the program.

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=26

Don’t forget to tip your wait person!
Now let’s look at a complete example. Suppose we wanted to write

a program that asks the user for a restaurant server’s name, amount
of restaurant bill, and tip percentage. The program should compute
and display the tip amount and the total bill.

Figure 4.10: The tipping program.

When we run this program, a sample interaction appears below:

Chapter 4: Strings | 45

https://una.pressbooks.pub/python-textbook/?p=26

Figure 4.11: Program interaction.

As you can see from the code, a type cast was needed to convert
the meal cost and tip percentage from a float to a string. A type
cast was not needed for the wait person since it is already the
intended string type.

Chapter Review Exercises:
4.1. Show the output of the Python instructions:
str = “Tigers win the game”
print (len(str))
4.2. Show the output of the Python instructions:
str = “Tigers win the game”
print (str[6:9])
4.3. Show the output of the Python instructions:
str = “Tigers win the game”
print (str.find(“win”))
4.4. Show the output of the Python instructions:
str = “Tigers win the game”
print (str.find(“lose”))
4.5. Show the output of the Python instructions:
str = “Tigers win the game”
print (str.upper())
4.6. Show the output of the Python instructions:
str = “Tigers win the game”
print (str.count(“e”))

46 | Chapter 4: Strings

5. Chapter 5: Printing

PRINTING

Topics Covered:

• The print function
• Rounding
• Format specifiers

The print function
Even when we are working with a text-based user interface (TUI),

we would like to design programs that are easy to use and intuitive
for the user. In order to do this effectively, it is necessary to
understand how to take full control of how you display data on
the screen. To begin, we will take a closer look at how
Python’s print statement works.

Chapter 5: Printing | 47

You can see from these examples that the print statement allows
any number of parameters, or items between the parentheses. In
the first example, there was only one parameter, “dog”. The second
example had no parameters so it just printed a blank line. The final
two examples each had three parameters. Notice how a space was
displayed between each item; this sets Python apart from many
other commonly-used programming languages.

If you wanted something other than a space between each item,
you can define the separator with the sep attribute of the print
statement. Here are some examples of programmer-defined
separators:

48 | Chapter 5: Printing

You can see in each example, the items that were normally
separated by a space are now separated by the string that
followed sep=. The third example shows how you can use the empty
string to print items without any separation. The final two examples
begin with a backslash (\) and create what is called an escape
sequence. The character that follows the backslash defines a special
character. The “\t” produced a tab and the “\n” created a newline.

We have previously seen that each print statement will generate
output on a new line. Occasionally, you would like to display
something, but you do not want to move the following output to the
next line. In this case, you can define how the line should end be
setting the end attribute to a string that should terminate the print.
Here is an example:

In this code example, the first three print statements are directing
each output to be terminated with a space instead of the default

Chapter 5: Printing | 49

new line. Without these three end=” “ clauses, the four print
statements would create four lines of output. Instead, the output
looks like this:

Rounding Numbers
We introduced the round function in chapter 3. It can be used to

round a floating point to the nearest integer. It can also be used
to round a floating point number to a specified number of decimal
places. It is important to note that when you use round in a print
statement with a variable, the value of that variable does not actually
change. This example will illustrate the point:

The output when that code segment is executed looks like this:

There are cases in which you would like to store the rounded result
of an expression. Perhaps you are rounding a currency expression
to the nearest hundredth so you can keep track of dollars and
cents. In the following example, we compute the simple interest
for an amount of $465.83 deposited in an account earning 4.25%
interest for 2.5 years. We will display that interest as calculated, plus
rounded using 2 decimal places. Here is the Python code along with
the output displayed by the program:

50 | Chapter 5: Printing

You can either round a previously calculated result, or you can
include the round function in the computation, as shown below:

roundedInterest = round(interest,2) # store to a new variable
interest = round(principal*rate*time,2) # round formula

Format Specifiers
Sometimes, rounding alone doesn’t provide enough control over

the output’s appearance. Let’s take a look at the simple interest
example again, but this time use data that produces an interest
value that naturally ends with only one decimal place. Here is the
Python code and the sample run:

With a currency amount, we often want two decimal places
displayed, along with a dollar sign immediately in front of the
amount. Since a space separates the label and number by default,
we can use the separator to close the gap. We can use a format

Chapter 5: Printing | 51

specifier to force two decimal places to be printed. Here is the new
and improved version, along with the program’s output:

In the example above, the format specifier “%.2f” was placed before
the variable interest with a percent symbol, %, separating the two.
This expression forces the output to display two digits after the
decimal point. Python provides quite a bit of functionality with
format specifiers, as illustrated below:

The “%xxd” specifier is used to define the total width of the output
field. By default, the result is aligned to the right, or right justified,
with spaces attached to the left of the value. The dash (-) can be
used to change the alignment to the left so spaces are instead added
to the right when integers d, e, and f are displayed:

52 | Chapter 5: Printing

Python also allows you to combine rounding and field-width
specification into a single formatting specification. This is especially
useful when you are trying to align numbers into columns. In the
Python code below, we will display each of four numbers using two
decimal places and a total of seven characters:

In this output, notice that the value 893.00 takes up six characters
so one space was added on the left. Also, observe that the decimal
points all align vertically, as well as the digits in the tenths and
hundredths place.

Chapter 5: Printing | 53

We have seen how the letter d is used for integers and f is used for
floating point numbers. You can use the letter s when formatting
string variables or expressions. The alignment for strings is similar
to that of integers. In the next example, we will display the first
name, last name, and career rushing yards for three former football
players. In each case, both the first and last names will be displayed
in 10-character fields, aligned on the left. The rushing yards will
be displayed in eight-character fields; special formatting is used to
specify that commas should be used to separate the numeric values
in three-digit groups.

INTERACTIVE – Formatting output
Look at the code snippet below and try to predict the output. Run

the program and check your guess. Take a look at the code where
there is a backslash and consecutive double quotes after the height
is printed. Can you figure out what’s going on?

One or more interactive elements has been excluded

54 | Chapter 5: Printing

from this version of the text. You can view them online here:

https://una.pressbooks.pub/python-textbook/?p=28

As noted ahead of the example, a different technique was used to
control the appearance of the rushing yards. Python provides a
number of different mechanisms for controlling the format of your
output. In the following example, three different techniques are
used to display a floating-point value in a field that is six characters
wide, and allows two digits after the decimal point. We believe that
the first method, %-formatting, is the easiest to understand, and
will be more than adequate for our needs. To learn more about the
other two mechanisms, the format() method and the f-string, you
can consult other resources, including books and websites.

The corresponding output:

With a Python f-string, you can put expressions between curly
brackets {}. In the example below, we print an f-string that includes
the variables this and that, as well as their product this*that:

Chapter 5: Printing | 55

https://una.pressbooks.pub/python-textbook/?p=28

You can use f-strings to specify the spacing and precision of
variables or expressions that you want to display. Below we print
the value of the floating point variable named number, first
with 1 decimal place, then with 5 decimal places:

Chapter Review Exercises:
5.1. Show the exact output of the Python code (use ^ to indicate

spaces):
amount1 = 25.8888
amount2 = 4
amount3 = 382.62
amount4 = 843.676767
print(“%8.3f”%amount1)
print(“%8.3f”%amount2)
print(“%8.3f”%amount3)
print(“%8.3f”%amount4)

56 | Chapter 5: Printing

6. Chapter 6: Selection

SELECTION

Topics Covered:

• Decision making in Python
• Comparison operators
• Boolean expressions
• Else and elif statements
• Nested if-else blocks

Decision Making in Python
In order to allow a computer to handle different data values in

different ways, programming languages need to provide some type
of decision‑making capabilities. In Python, the simplest form of

Chapter 6: Selection | 57

decision‑making capability is provided by the if statement, which
has the following format:

if Condition:
 Action
In this prototype, Condition stands for any expression that can

be evaluated to either True or False. Most often, the Condition is
a simple comparison. In Python, you can use the following
comparison operators:

Operator Meaning Example
 == is equal to A == B
 < is less than A < B
 > is greater than A > B
 != is not equal to A != B
 <= is less than or equal to A <= B
 >= is greater than or equal to A >= B
These operators should be self‑explanatory. You need to be

careful, though, when comparing fractional values, since equality
rarely holds between two fractional variables or expressions. This is
because fractional values are approximated in the computer. When
a series of arithmetic operations is performed using approximated
values, it is almost inevitable that these values will undergo a
significant amount of round-off in the final decimal places. Here
are a couple of examples of conditions, or Boolean expressions,
evaluated in the Python Interactive window:

58 | Chapter 6: Selection

The Action component of the if statement is the instruction, or
series of instructions, to be carried out if the condition is True. If
more than one instruction is to be carried out, the whole series
of instructions should be indented at the same level. This tells the
computer to treat the entire group of instructions, commonly
referred to as a block, as a single unit. Python’s Idle environment
assists you by automatically indenting when you type a colon at the
end of a line.

To illustrate, the following are examples of legal if statements in
Python:

if hoursWorked <= 40:
 grossPay = rate * hours
if prevID != currID:
 idCount = idCount + 1
 prevID = currID
In the first example, the variable hoursWorked is compared to 40;

if it is less than or equal to 40, the value of grossPay is computed by
multiplying rate by hours.

In the second example, the variables currID and prevID are
compared. It’s assumed that these are both numeric variables. If the
values don’t match exactly, then two actions are carried out. First, 1

Chapter 6: Selection | 59

is added to the variable idCount; presumably, the program is going
to count how many distinct identification numbers are processed.
Second, the value of the variable currID is being copied into the
variable prevID.

It is worth emphasizing here just how important
the indentation of blocks is with Python. Most languages use either
keywords, such as begin/end, or curly brackets { }, to indicate
blocks of code. The white space (space, tab, new line) in these
languages is ignored. For a block to work in Python, the indenting
for each instruction has to be created using the same keystrokes.
For example, you cannot use the TAB key on the first line of the
block and then consecutive spaces on the second line, even if they
appear to visually align vertically.

The standard comparison operators (<, <=, >, >=, ==, and !=) can be
used to compare strings, as well as for comparing numeric values.
You should be aware, though, that string comparison is case
sensitive. The ASCII values of characters are used when
comparisons are made between two strings. Here are some
examples:

In the first example, “fish” is less than “turkey” because the ASCII

60 | Chapter 6: Selection

value of “f” (102) is less than that of “t” (116). A “d” has a value (100)
greater than that of “c” (99), so “dog” is not less than “cat”. When
strings begin with the same character, the comparison moves on
to succeeding characters until characters in the two strings differ.
The string “twinkie” is less than “twister” since the fourth character
“n” had an ASCII value (110) less than that of “s” (115). Finally, upper
case letters have smaller ASCII values than lower case letters. The
string “cat” is not less than “Cat” because the “c” has a value of
99 and the “C” has a value of 67. Since 99 is not less than 67, the
expression “cat”<“Cat” returns False.

The bool Data Type
In some cases, it’s handy to be able to remember if something has,

or hasn’t, occurred. One way to do this is to set a special “marker”
value in some variable. For example, the variable flag, of type int,
might be initially set to 0, but then changed to 1 if some special
event takes place. The test:

if flag == 1:
could then be used to see if the event has taken place. Of course,

it’s important for the programmer to remember if the value 1 stands
for “yes” or “no” within the program, which may not be easy. A
better way is to use a more descriptive variable name, and give that
variable the type bool, which stands for True or False. Typically,
the bool variable might be set to False to indicate that an awaited
event hasn’t yet taken place, and then subsequently changed
to True after the event does occur. For example, the
variable buttonPressed might be used to indicate that a mouse
button has been pressed. When the button is
pressed, buttonPressed could be set to True, while a release of the
button would cause the value to be changed to False.

To test the variable, it is sufficient to say:
if buttonPressed:
instead of:
if buttonPressed == true:

Chapter 6: Selection | 61

While this may seem like a minor difference, it does improve the
overall readability of the program.

The if – else Statement
Often, a programmer has to choose between two alternate

actions, depending on the result of a comparison. For example, the
task of figuring an hourly employee’s gross pay, when overtime is
paid for hours in excess of 40, might be programmed as:

if hoursWorked <= 40:
 grossPay = hoursWorked * hourlyRate
if hoursWorked > 40:
 grossPay = hourlyRate*40 + 1.5*hourlyRate*(hoursWorked–40)
Can you guess what would happen if the programmer accidentally

wrote the first comparison as hoursWorked < 40? If you think about
it, you’ll realize that this could be a serious error ‑ grossPay won’t
be computed for workers with exactly 40 hours. Sadly, this type of
problem arises far more frequently than you might imagine. In some
circumstances, Python is able to tell you that you have a potential
problem. If the variable grossPay in the above example hadn’t been
given an initial value before the if statements are encountered, the
Python interpreter will trigger an error since the variable wasn’t
initialized. But if the value of grossPay had already been computed
for a previous employee, then this employee would end up receiving
the same gross pay!

In addition to this being a nasty error condition waiting to
happen, the redundant comparison of hoursWorked to 40 is also at
least a little troubling; it just doesn’t seem necessary. To simplify
this type of situation, most programming languages allow another
form of the if statement, usually called the if ‑ else. Using Python’s
version of this instruction, the above sequence could be written as:

if hoursWorked <= 40:
 grossPay = hoursWorked * hourlyRate
else:
 grossPay = hourlyRate*40 + 1.5*hourlyRate*(hoursWorked–40)
Whenever the keyword else is encountered, it is automatically

62 | Chapter 6: Selection

associated with the most recent if. Perhaps the simplest way to
understand its use is to think of it like this:

If some condition is true,
 here’s what I want you to do.
But if that condition is false,
 I want you to do this, instead.
As with the simple if statement, multiple actions are specified

by indenting those instructions to the same level. For example,
if a company’s payroll required regular and overtime pay to be
calculated separately, it might be done like this:

if hoursWorked <= 40:
 regularPay = hoursWorked * hourlyRate
 overtimePay = 0
else:
 regularPay = 40 * hourlyRate
 overtimePay = 1.5 * hourlyRate * (hoursWorked – 40)
As you model the decision-making process using a flowchart,

whenever a condition occurs, you should include that condition
inside of a diamond. Two arrows will exit the diamond, one
designating the path if the condition is True; the other path when
the condition is False. Below are flowcharts modeling
an if statement and an if-else statement.

Chapter 6: Selection | 63

Flowchart Modeling an if statement.

64 | Chapter 6: Selection

Flowchart Modeling an if-else statement.

General Programming Constructs
No matter which programming language you are using to solve

a problem, there are three general computer programming
constructs that are required:

1. Sequence – the computer will execute one instruction after the
next.

2. Selection – this is the decision-making process using if or if-
else statements.

3. Repetition – creating a loop. We will study this in chapter 7.

Suppose the local bagel shop asked you to write a simple program to
compute the charge for each customer’s purchase. Bagels normally
cost 75 cents each, but if you buy a half-dozen or more, then the
charge is 60 cents per bagel. Of course, once we learn the quantity,
a decision needs to be made. Our newly acquired if-else statement
would be perfect here:

Chapter 6: Selection | 65

Program to compute charge for bagel sale
Written by XXX XXXXX
CS101 – Introduction to Computer Programming
Date: XX/XX/XXXX
quantity = int(input(“How many bagels do you want? “))
if quantity<6:
charge = .75 * quantity
else:
charge = .60 * quantity
print(“Total charge is”, charge)

Compound Conditional Expressions
In many cases, it’s necessary to consider multiple conditions to

decide if some action should or should not be performed. In some
cases, two or more conditions must be true; in other cases, at least
one condition, from a list of possible conditions, must be satisfied.
In these situations, you can combine individual comparisons in a
single expression. For example, a salesperson might be due to
receive a bonus if he or she has at least 20 customers, and accounts
for at least $10,000 in sales. Or maybe a student will receive an F in
a class if his or her test average is below 60, or if he or she has more
than 10 unexcused absences.

The key words in these two examples are “and” and “or.” When
two or more conditions are joined with the word “and,” it implies
that ALL of the conditions must be satisfied in order for the entire
expression to be considered true. In contrast, the word “or” implies
that AT LEAST ONE of the specified conditions must be satisfied to
obtain a result of true.

The salesperson example from above might be represented in
Python like this:

if numCustomers >= 20 and totalSales >= 10000:
 …
while the student example might instead be expressed like this:
if testAvg < 60 or absences >= 10:
 …

66 | Chapter 6: Selection

While less common, it’s sometimes necessary to mix “and” and
“or” conditions in a single expression. Python has default rules for
interpreting these expressions, but it’s probably best to instead use
parentheses to explicitly dictate the order in which the individual
expressions should be combined.

Although not required, you can add parentheses, which many
people find to be more readable:

if (testAvg < 60) or (absences >= 10) :
or even:
if ((testAvg < 60) or (absences >= 10)) :
Finally, in some contexts, it’s desirable to perform some action

if some condition or conditions are NOT met. Typically, the
word not is placed outside of a parenthesized expression. For
example, you could check to see if a salesperson is not eligible for a
bonus like this:

if not (numCustomers >= 20 and totalSales >= 10000):
 …
An easier way to ask this same question, though, might be to ask:
if numCustomers < 20 or totalSales < 10000:
 …

Nested if Statements
Whenever one or both of the actions associated with an if –

else instruction contains another if statement, the resulting form
is referred to as a nested if. The nested form arises naturally in
contexts where a choice must be made between several different
options. To illustrate, consider the following scenario.

To receive a grade of A, a student’s average must be at least 90. A
B will be assigned if the average is at least 80, but less than 90, while
a C is assigned for a grade of at least 70, but less than 80. For an
average of 60 or higher, but less than 70, the letter grade is D, while
an average below 60 leads to a grade of F.

Using only if statements, this grade assignment problem could be
programmed like this:

if average >= 90:

Chapter 6: Selection | 67

 grade = ‘A’
if average >= 80 and average < 90:
 grade = ‘B’
if average >= 70 and average < 80:
 grade = ‘C’
if average >= 60 and average < 70:
 grade = ‘D’
if average < 60:
 grade = ‘F’
While this sequence will certainly do the trick, it requires several

redundant comparisons, and also contains a number of potential
trouble spots, where either numbers or comparison operators could
easily be messed up.

An alternate form, which significantly reduces the number of
comparisons required, is the following:

grade = ‘A’
if average < 90:
 grade = ‘B’
if average < 80:
 grade = ‘C’
if average < 70:
 grade = ‘D’
if average < 60:
 grade = ‘F’
While this form is clearly shorter, it’s far more difficult to

understand, because it relies on a trick. Every student is initially
assigned an A, and then their grades are reassigned as each new test
shows their average to be lower. Often, programmers forget that
other people need to be able to understand their programs, too, and
will rely on tricks that, while the trick they came up with might be
obvious to them, it might not be obvious to others.

The elif statement
When you have an if statement immediately following an else

section, Python provides elif, which combines the two statements.

68 | Chapter 6: Selection

A cleaner version of the grade checker, which takes advantage of
the elif statement to assign a grade to each student exactly once,
would be:

The comments on the right clarify why this form works. When
an if statement follows an else, it can rely on the fact that the
condition associated with the preceding if is already known to
be False. This characteristic is shown in most well written
nested if blocks – the secondary if statements are placed so they
follow an else, thereby ensuring that the earlier if condition is
already known to be False.

Whatever you do, don’t place the if within the if portion, as
illustrated below:

While this form will, in fact, work properly, it’s a rare person who
could figure it out on the first try!

INTERACTIVE – Can you debug it?

Chapter 6: Selection | 69

The program below asks the user to enter a number. It will then
display whether the input number is positive, negative, or zero. The
only problem, though, is that the code contains three errors. Can
you fix it?

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=30

Let’s take a look at a complete program that will need selection to
work. The program will process a savings-account withdrawal. It
should ask the user for their current balance and the amount of the
withdrawal. If the transaction was successful, it should display the
customer’s new balance. If the balance wasn’t large enough to
handle the withdrawal, the program should output “Transaction
denied”. If the new balance is less than $100, then “Balance below
$100” should be printed.

Before we tackle the code, we can model the solution to this
problem using the following flowchart:

70 | Chapter 6: Selection

https://una.pressbooks.pub/python-textbook/?p=30

Flowchart Modeling the Bank Withdrawal Problem.

As you observe from the flowchart, there are two triangles, or

decisions, involved. The first is an if-else statement that checks to
see if the customer has sufficient funds for the withdrawal. The
second decision is an if-statement checking to see if the customer’s
balance if below $100. The Python solution looks like this:

Chapter Review Exercises:
6.1. Given the following Python instructions:
a = 12

Chapter 6: Selection | 71

b = 12
c = 8
What is the value of the following condition (True or False)?
a != b
6.2. Given the following Python instructions:
a = 12
b = 12
c = 8
What is the value of the following condition (True or False)?
a < b and b > c
6.3. Given the following Python instructions:
a = 12
b = 12
c = 8
What is the value of the following condition (True or False)?
a < b and b > c
6.4. Show the output if the following Python instructions were

executed:
a = 4
b = 5
c = 13
if a+b < 10:
 print(c)
else:
 print(a)
6.5. Show the output if the following Python instructions were

executed:
miles = 10
if miles<20:
 price = 5 + .30*miles
else:
 price = 2 + (20-miles)*.10
print(price)

Programming Projects:

72 | Chapter 6: Selection

6.1. Write a program that will ask for the name and age of two
people. The program should then display a message saying either
“X is older than Y”, “X is younger Y”, or “X is the same age as Y”
(assuming the first person has name X and the second person has
name Y).

6.2. Leo’s Print Shoppe charges 8 cents per copy for the first 50
copies and 5 cents per copy for the copies beyond the first 50. Write
a Python program that asks for the customer’s name and how many
copies they need. Your program should output the customer’s name
and the total cost (using a dollar sign and 2 decimal places).

• Write an algorithm to solve the problem. Save it as a Word
document.

• Write a flowchart to model the solution to the problem. Save it
as a PDF document.

• Implement the solution to your problem as a Python program.
Add at least 4 lines of comments at the top.

Chapter 6: Selection | 73

7. Chapter 7: Repetition

REPETITION

Topics Covered:

• Repetition
• While loop
• For loop
• Range()
• Finding maximum

Repetition
Suppose a student was trying to compute the average of three

exam scores. It would be relatively easy to construct a Python
program to do this:

exam1 = float(input(“Enter exam #1 score: “))
exam2 = float(input(“Enter exam #2 score: “))

74 | Chapter 7: Repetition

exam3 = float(input(“Enter exam #3 score: “))
average = (exam1 + exam2 + exam3) / 3.0
print(“The average is”, “%.1f”%average)
Okay, but what if there were five exam scores instead of three?

Well, that’s obvious. Just create two more variables, add two inputs,
and then divide the sum by 5.0 instead of 3.0:

exam1 = float(input(“Enter exam #1 score: “))
exam2 = float(input(“Enter exam #2 score: “))
exam3 = float(input(“Enter exam #3 score: “))
exam4 = float(input(“Enter exam #4 score: “))
exam5 = float(input(“Enter exam #5 score: “))
average = (exam1 + exam2 + exam3 + exam4 + exam5) / 5.0
print(“The average is”, “%.1f”%average)
Well, what if there were 100 exam scores? Of course, you could

add another 95 variables and 95 input statements, but there must
be an easier way. If we create a total variable and add each exam
score to it once it’s been input, we don’t need to remember the
exam scores. What we would like to do is repeat the same two
instructions (input number, add it to the total) 100 times.

Perhaps the one feature of computers that has contributed the
most to their success is their ability to repeat instructions until
some type of event has taken place. There are several different
instructions that can be used to implement repetitions within a
Python program. These loop instructions, along with the selection
instructions discussed in chapter 6, are examples of control
structures, since they alter the sequential flow of the program.

The while Instruction
The first repetition instruction we’ll examine is

the while instruction, which has the following form in Python:
while Condition:
 Action
As with the if statement, the component labeled Condition is

any True or False expression, and is usually, but not always, some

Chapter 7: Repetition | 75

type of comparison. In operation, the instruction tells the computer
to repeatedly:

a) Test the Condition to see if it is True
b) If the Condition is True, carry out the Action
The key feature that distinguishes this from an if statement is

that fact that this sequence can be carried out over and over, as
necessary, until the value of the Condition becomes False.

Like the if, the Action component of a while instruction may
consist of more than just a single instruction. In this case, it is
necessary to indent at the same level all of the instructions that
make up the Action.

To illustrate the behavior of the while instruction, consider these
examples:

sum = 0
number = 10
while number > 0:
 sum = sum + number
 number = number – 1
This instruction sequence will add the values 10, 9, 8, and so

on, down to 1, to the variable sum. In other words, the instruction
sequence is a long way to say:

 sum = 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1
In this example, the indenting of the block is needed to capture

the two instructions that make up the Action. To see why this
matters, take a look at the alternative:

sum = 0
number = 10
while number > 0:
 sum = sum + number
number = number – 1
In this case, even though both instructions were intended to be

within the loop, the only instruction actually in the loop is sum
= sum + number. Since the value of the variable number never
changes from its initial setting of 10, this loop will never terminate.
This type of (erroneous) program segment is called an infinite loop.

76 | Chapter 7: Repetition

As a third example of the while instruction, consider this
sequence:

sum = 0
number = 0
while number > 10:
 sum = sum + number
 number = number + 1
In this case, the apparent intent of the programmer was to count

from 0 up to 10. However, because the Condition is incorrectly
stated, the value of the Condition is initially False. When this
occurs, Python will bypass the instructions that make up the loop
entirely. The while instruction is commonly referred to as a pre-test
loop structure; it tests the Condition at the very start of the loop,
before it carries out the specified Action.

We have seen how useful the Python Interactive mode is for
testing lines of code and experimenting. With multiple-line
instructions like if statements or while loops, you can still use the
Interactive mode. After typing the colon and ENTER after your
control structure’s Condition, the cursor moves to the next line
without displaying the >>> prompt. You can type as many
instructions as you’d like into your block. Just hit ENTER twice
after the final instruction in your block. Here is a simple while loop
example tested in the Interactive window:

Chapter 7: Repetition | 77

Before the loop, the variable num is initialized to 2. Since 2 is less
than 20, the Condition is True and Action will be executed. In this
case, the Action is two instructions, display num and its square,
then increment num by 3. This process continues until num
eventually reaches a value of 23, which is greater than 20, and
causes the Condition to be False.

Let’s look at a full example of the while loop in action. The
problem we want to solve: How long it will take to have half of a
loan paid off? Before we jump into the code, let’s take a look at
a flowchart that models a solution to this problem. Flowcharting
a while loop looks very similar to that of an if statement.
The Condition is represented by a diamond and arrows
labeled True and False must exit this diamond.

In our solution, we will first ask the user to input the amount
of the loan, the annual interest rate, and the
monthly payment amount. We will initialize a balance variable to
the loan amount and set a month variable to 1. Our Condition will
check to see if the remaining balance is still greater than half of
the original loan. For the Action of this while loop, the program will
compute the interest, determine the new balance, and then output

78 | Chapter 7: Repetition

the month, interest, payment and balance. To compute the
interest, the balance is multiplied by the annual interest rate. It is
divided by 12 to convert it to a monthly rate and then divided by 100
to convert it from a percentage to a decimal number. The final step
is to add 1 to the month before looping back to the Condition.

Flowchart Modeling a Loan Payoff.

Next, we will use the flowchart solution to show the Python

program that solves this problem:

Chapter 7: Repetition | 79

Below is the output of a sample run of the program. Suppose you
bought a “new” car and took out a loan for $14,000. The annual
interest rate was 6.25% and you decided you would make monthly
payments of $500. You can see from the program run that you’ll be
halfway to paying off that loan in just 16 months!

80 | Chapter 7: Repetition

The for Loop
Another common and very powerful repetition structure in

Python is the for loop. The for loop will iterate, or repeat, once for
each item in a sequence. Each time through the loop, you can access
the current item in the sequence using a variable. For example, if the
sequence was 1, 2, 3, 4, 5, then the for loop variable will take on 1 the
first iteration of the loop, 2 in the second iteration of the loop, and
so on. The syntax of the Python for loop looks like this:

for Variable in Sequence:
 Action
The Sequence in this statement can take on many forms. We will

see later that the Sequence may contain items in a list or even lines

Chapter 7: Repetition | 81

from a file. The most common use, though, is the range function.
The reference range(m,n) – generates a Sequence m, m+1, m+2, …,
n-1. Let’s take a look at a couple of examples from the Interactive
mode:

In the first example, the range began at 3 and went up to 7, but
not including 7. On each iteration of the loop, the
current Sequence value was stored in the variable number, which
was printed as the loop Action. In the second example, the
variable item iterated from -3 to 2 and was also displayed during
the loop’s Action.

82 | Chapter 7: Repetition

Now would be a good time to see how we could use the for loop
to solve a problem: Write a program that will display the world
population through 2025. Assume that the population was 7 billion
in 2011 and that it grows at a rate of 1.1% each year. The program
should display the year and population for each year on a line
together. Here is a look at one solution to this problem:

population = 7000000000
print(“Year Population”)
for year in range(2011,2026):
 print(year, f”{round(population):15,d}”)
 population = 1.011*population
Shown below is the output when the program was executed.

Notice that this program did not involve any keyboard input from
the user.

Chapter 7: Repetition | 83

There are a couple of things from the code above that probably need
some explanation. First, since we wanted to iterate the year variable
through 2025, the ending value in the range needed to be the next
integer, 2026. To display the population, we first rounded it to the
nearest integer. We then used an f-string to output using 15 total
characters and commas between each 3-digit period.

Another way you could have written the formula for the
population would be to say population = population +
.011*population. In other words, the following year’s population will
be the current population plus 1.1% times the current population.

84 | Chapter 7: Repetition

If you were thinking that you could have solved this problem
using a while loop instead of a for loop, you are absolutely correct.
Shown next is the comparable Python program using a while loop.
It produces the exact same output as the program with the for loop.
You should notice, though, that the while loop version is actually
two lines longer than the for loop version since it was necessary
to initialize the variable year to 2011 before the loop and increment
year during the Action of the loop.

population = 7000000000
year = 2011
print(“Year Population”)
while year < 2026:
 print(year, f”{round(population):15,d}”)
 population = 1.011*population
 year = year + 1
In the previous for loop examples, the value of the control variable

increased by one for each iteration. An alternate form of
the range function can be used that allows a third parameter,
usually referred to as the step. This will make much more sense after
looking at a couple of examples using the Interactive mode:

Chapter 7: Repetition | 85

In the first example, number began at 13 and stepped by increments
of 2. When it reached 21, the loop terminated. In the second
example, thing began at 0 and incremented by steps of 5 until

86 | Chapter 7: Repetition

reaching the ending range value 30. In the final example, item began
at -5, incremented by steps of 3 and stopped when it reached 7.

INTERACTIVE – Loopy fun!
Before running the program below, try to predict its output.

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=32

Finding Maximum
A frequent problem to solve in computing involves finding a

maximum (or minimum) value of a list of numbers. The algorithm to
accomplish this is pretty straightforward:

1. Set maximum to an artificially low value (smaller than any
possible input)

2. Loop once for each value

1. Input a value

1. If value is larger than maximum, then it becomes the
new maximum

If you know in advance how many values you will have, a for loop
is a good choice. Suppose we would like to ask the user how many
values will be entered first. Then, the user will enter each value. You
should note that these values could be exam scores, stock prices,
fish weights, temperatures, etc. Our algorithm will work for any
application. Here is a Python program that will implement a solution
based on the algorithm above. The output for a sample run of the
program is also provided.

Chapter 7: Repetition | 87

https://una.pressbooks.pub/python-textbook/?p=32

A couple of observations from this program:

• In the range, count+1 was used in order to loop count times.
• To make a more sophisticated prompt for an input statement,

you can precede a no-parameter input with a print statement
that provides the prompt.

• Because the program casts each input to a float, the user can
enter integers or floating point numbers.

Chapter Review Exercises:
7.1. How many lines will get output when the following Python

code is executed?
thing = 2
while thing < 10:
 print(thing)
 thing = thing + 1
7.2. How many lines will get output when the following Python

code is executed?
thing = 2

88 | Chapter 7: Repetition

while thing < 10:
 print(thing)
7.3. How many lines will get output when the following Python

code is executed?
thing = 2
while thing > 10:
 print(thing)
 thing = thing + 1
7.4. How many lines will get output when the following Python

code is executed?
for num in range(3,8):
 print(num)
7.5. How many lines will get output when the following Python

code is executed?
for num in range(5,17,3):
 print(num)

Programming Projects:
7.1. Write a program that creates a table to display Fahrenheit-

to-Celsius conversions. Use the following formula to do the
conversions:

You should ask the user for start, end, and step values for Fahrenheit
temperatures. The program should print column headings and the
values printed should be displayed using 2 decimal places.

The sample interaction should look like this:

Chapter 7: Repetition | 89

90 | Chapter 7: Repetition

8. Chapter 8: User-defined
Functions

USER-DEFINED FUNCTIONS

Topics Covered:

• Functions
• Return values
• Parameters
• Arguments

Functions
Throughout the first seven chapters, we learned about many of

Python’s built-in functions, including print, input, and round.
Often, especially as our computer programs get longer and more

Chapter 8: User-defined Functions | 91

complex, it is convenient to write our own functions. It is worth
considering the reasons to create functions, which are sometimes
called subroutines or subprograms.

Advantages of including user-defined functions in a project:

• Code efficiency: Instead of duplicating a block of code, you can
write a function that implements that block and calls it
multiple times.

• Simplify problem solving: You can take a complex problem and
break it into smaller tasks, and then write a function for each
of the tasks.

• Code readability: It is easier to read a structured program
consisting of multiple functions than a long listing of code
containing no subroutines.

• Reuse of code: Functions that perform a specific task can often
by recycled or reused in multiple programs.

• Ease of debugging: When troubleshooting and testing code, it is
easier to focus on one subroutine at a time than to try to
examine one big, long program.

• Teamwork: Software developers frequently work in groups on
large programming projects. Breaking the projects into
subroutines naturally simplifies the distribution of the
workload among team members.

To write your own Python function, you use the word def (short
for define), followed by the FunctionName and
a ParameterList enclosed in parenthesis, ending with a colon.
Similar to an if statement or loop, the Action block of instructions
included in the function must be indented at the same level. The
final instruction in the function is an optional ReturnStatement.

def FunctionName (ParameterList):
 Action
 ReturnStatement
To get a better feel for how functions work, we will take a look

at several examples. In the first example, we define a function

92 | Chapter 8: User-defined Functions

called printFruit that will simply print “Apple”, “Banana”, and
“Cherry”, each on a separate line. The printFruit function has no
parameters and does not explicitly return a value. This definition
creates the function, but we actually need to call it for the function
to get triggered and run. To call the function, we provide the
function name followed by parentheses. In the example below, we
make three calls to the printFruit function.

Define a function to print some fruit
def printFruit():
 print(“Apple”)
 print(“Banana”)
 print(“Cherry”)
Make 3 calls to the printFruit function
printFruit()
printFruit()
printFruit()
The output from running the above program is displayed here:

Some functions, such as printFruit, perform a task, but don’t return
an explicit value. Other functions computer a result (and may also

Chapter 8: User-defined Functions | 93

perform a task) and return that single result to the user. A Python
function can actually return multiple values.

In our next example, we will write a function that converts a
Fahrenheit temperature to its Celsius equivalent. You can think of
a function as a mini program. The inputs to the function are its
parameters. A parameter is simply a placeholder variable that is
listed in parenthesis in the heading of the function definition. The
output of the function is produced using a return value, which is a
data item that is sent back to the function call.

In the convertToCelsius function, a parameter named fahren is
passed to the function. The formula (5/9)*(fahren-32) is applied to
that parameter and the result is stored in a variable named cels.
This cels variable is then returned by the function.

After the function definition, the program illustrates three
different ways you might make a call to convertToCelsius. Since the
function has a parameter, the function call must send an argument
to the function. An argument is the actual value passed to the
function within parentheses when the function is called. (Note:
Sometimes the parameter shown in the function definition is
referred to as the formal parameter and the argument that is
supplied when the function is invoked is referred to as the actual
parameter.)

In the first function call, we actually hard-coded the number 65 as
the function argument and included the function call within a print
statement. The value that returned the function, 18.333, was
displayed. In the second function call, we passed 90 as the function
argument, but this time we stored the return from the
function, 32.222, to the variable amount. In the third example, we
used keyboard input from the variable fahrenheit as the argument
to the function. With a user input of 28.3, the result, -2.055, was
returned to a variable named celsius.

94 | Chapter 8: User-defined Functions

The output when running the above program with the user entering
28.3 at the keyboard when prompted:

Modeling a Function using a Flowchart
When using flowcharts to design or document a program, you

should create one flowchart for each of the program’s functions
and another flowchart for the main program. Later, we will show
how you can actually put the main body of the program in its
own function. A new rectangular symbol, labeled as “process” by
the draw.io website, is used to model a function call.

You should include the function name, parameters, as well as
a stored variable where appropriate in this shape. In the actual
function flowchart, the initial ellipse should include the function
name (with parameters) instead of the label “start.” The final ellipse
should include the return statement instead of the label “end.” The
flowchart below models the convertToCelsius program, although
only the third example is illustrated:

Chapter 8: User-defined Functions | 95

The following example uses a function pay to compute the weekly
payroll. The hourly wage and the total hours are input to the
function as parameters. The pay amount is computed, providing
overtime pay for hours worked over 40. Once computed, that
amount is returned.

The program asks the user to input empWage and empHours at
the keyboard. These values are passed to the function as arguments.
The amount returned is store to the variable empPay and then
printed. The complete program and a sample run are shown next:

Here is the interaction that takes place when the program is run,
and the user enters 9.35 as the hourly wage, and 27 as the weekly
hours worked.

96 | Chapter 8: User-defined Functions

INTERACTIVE – Function fun!
The program below illustrates several simple functions and calls

made to them. Try to predict the output of the program and then
run it to see if you nailed it!

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=34

The scope of a variable is the section of the program where that
variable is visible. A variable that is first initialized in a block is said
to be local to that block. It is not visible, or available, outside of the
block. A variable that is accessible in the entire file is said to
have global scope. The global keyword can be used to declare a
variable as global, even if this declaration is made inside of a block.
The following code illustrates several examples of scope:

Chapter 8: User-defined Functions | 97

https://una.pressbooks.pub/python-textbook/?p=34

Chapter Review Exercises:
8.1. Name six advantages of creating user-defined functions.

Programming Projects:
8.1. Modify Programming Project 6.2 in the following ways:

• Write a copyCost function that will have one argument, the
number of copies. It should compute the cost based on the
given formula and then return that cost.

• Write a main function that will ask for the customer’s name
and the number of copies. It will then make a call to your
copyCost function and store the result to a variable. Finally, it
should print the customer’s name and the copy cost (using a
dollar sign and 2 decimal places).

• Create a flowchart to model your solution.

98 | Chapter 8: User-defined Functions

9. Chapter 9: Lists and
Dictionaries

LISTS AND DICTIONARIES

Topics Covered:

• List basics
• Slicing a list
• Deleting from a list
• Adding to a list
• Processing a list
• List operators

List basics
A list is an ordered sequence of objects. You can use a list to store

multiple items using a single variable. The Python list has many
similarities to an array, which is provided by most programming

Chapter 9: Lists and Dictionaries | 99

languages. The main difference is that every item in an array must
have the same data type while a list may contain objects of different
types. If you know the values that you want to store in a list, you can
create a list by enclosing the set of values, separated by commas,
between square brackets, like this:

The variable school now stores five data items associated with a
university. Similar to a string, you can access individual elements
of the list by using an index, or subscript. In the example below,
we access the first element (using index 0) and the fourth element
(using index 3). When attempting to access the element using
index 5, Python indicates an error has occurred since the index is
out of range:

Python provides several statistical functions that come in handy
when processing data in a list. In the code below, we create two
more lists and then try out the len(), max(), min(),
and sum() functions. These functions are pretty straightforward. As
discussed in chapter three, the max and min of strings use ASCII
codes. The program ran into trouble when it tried to find
the sum() of a list of strings. The sum() function only works on
numeric lists.

100 | Chapter 9: Lists and Dictionaries

Slicing a List
In the same way you can use square brackets [] and the colon (:)

operator to extract slices of strings, you can retrieve slices of lists.
The example below shows several slice examples. Examine each one
closely to verify your understanding of how slices work.

To further illustrate the concept of object-oriented programming,
we will take a look at a couple of functions, or methods, that are
associated with the list data type. As we saw when using methods
for string variables, to use a method, you reference the list variable,
followed by a dot, followed by the method name. Using the
same nums list from previous examples, first we examine

Chapter 9: Lists and Dictionaries | 101

the count() method. You provide a value to the count() method as
an argument, and it will return the number of occurrences of that
value. The second example is the index() method. Again, you pass
a value as an argument, but the index() method will return the
position of that value in the list. If the value occurs multiple times,
it returns the position of the first occurrence. If the value does not
exist in the list, you can see from the example that it will cause the
program to crash.

Deleting from a List
There are two ways to remove an item from a list. You can use

the del instruction if you want to delete an item based on its
subscript. In the next example, we first delete the fourth (using
subscript 3) item from the fruit list. After that, we get an error
message since we tried to delete the tenth item (using subscript 9),
but there were only four items in the list.

Instead of using the subscript, you can also remove an item based
on a value. In this case, you use the remove() method and pass the

102 | Chapter 9: Lists and Dictionaries

value to remove as the argument. If the item exists more than once
in the list, only the first occurrence will be deleted. If the item does
not exist in the list, an error will occur, as shown in the example that
follows:

Adding to a List
There are multiple ways to add items to a list.

The append() method is a simple technique that just adds the
required argument to the end of a list. In our next example, we
use append to add the value 33 to the end of a five-item list
named things.

The insert() method has two arguments, the position in the list
to place the new item and the value to be inserted. In the second
example, we inserted the value “tiger” at position 2, which is actually
the third item in the list. When the new list is displayed, “tiger”
squeezes into position 2 and all of the items after it are pushed back
one slot.

A third way to add items to a list is to use the extend() method.
This function is similar to the append() method except the
argument to be passed is another list instead of a single data item.
In the example, we created a four-item list named birds and then

Chapter 9: Lists and Dictionaries | 103

passed that list to the extend() method. The new contents
of things include the seven items it previously stored plus the four
items of the birds list.

List Processing
The code below illustrates three more useful Python list methods.

The first one, sort, arranges the list items in ascending order.
The sort() method can also be applied on a list of strings.
The reverse() method does exactly what you might guess. It just
flips the order of the list. Finally, the clear() method will delete all of
the items from a list. You can see from the example below that a list
is empty when it displays as just two brackets [].

List Operators

104 | Chapter 9: Lists and Dictionaries

Similar to the concatenation of strings, the plus (+) operator can
be used to combine two lists. In the first example below, you can
observe the instruction first + second is used to combine those two
lists.

In the final example, we use the multiplication (*) operator to
perform repetition. Once again, this mimics the repetition
functionality this operator applies with strings. Although the order
does not matter, the operation requires a list and an integer. As
you can see from the examples below, the list [1,2,3] is repeated
five times. It is often convenient to use this repetition operator
to initialize a list. For example, the final instruction initializes a
100-item list named pay to 100 values of zero.

To conclude the chapter, we will build a full application to solve a
problem:

Problem: The annual Lion Bass Fishing Tournament has hired you
to write an application to help process the tournament statistics.
Specifically, each team will use your application to input the weight
of each fish they catch. After entering a fish weight, the program will
ask the user if there are any more fish weights to enter. When the
tournament concludes, the program will display summary statistics

Chapter 9: Lists and Dictionaries | 105

for that team. This will include a table with the weights of all fish
caught, as well as the fish count, the total weight, the heaviest fish,
the lightest fish, and the average weight.

On the next page, we will first model a solution to this problem
with a flowchart. This is the coolest and most complex flowchart
we have seen so far. Of course, it begins with the “Start” symbol
and then initializes variables more and weights. You should be able
to follow along with each symbol of the flowchart and then see how
the flowchart naturally translates into the working Python program.

Flowchart to Model the Bass Fishing Tournament.

106 | Chapter 9: Lists and Dictionaries

In the program, you will notice how we took advantage of many
of the list functions and methods discussed in the chapter. To add
each fish to the weights list, we used the append method. To find
the fish count, total weight, heaviest fish, and lightest fish, we used
the len, sum, max, and min functions, respectively. Below, we will
show the output of a sample run of the program. Notice how we
used upper string method to convert all responses to more to
uppercase to make our program more user friendly, so the keyboard
user doesn’t need to worry about the ‘Y’ or ‘N’ input being upper or
lower case.

Chapter 9: Lists and Dictionaries | 107

108 | Chapter 9: Lists and Dictionaries

Dictionaries
Similar to a list, a dictionary is another Python data type that

is used to store a collection of data. A a data structure that is
also known as an associative array, the dictionary consists of a
collection of key-value pairs. Each key-value pair maps the key to its
associated value.

In the example below, a dictionary named school is created with
four key-value pairs. To initialize a dictionary, you use curly
brackets to enclose the data and a colon to separate each key-value
pair. The example shows how to access the value of an item, as well
as illustrates how to use dictionary functions and methods.

Program illustrating a Python Dictionary.

Chapter 9: Lists and Dictionaries | 109

The output when the above program is executed is seen here:

Program output.

Often times, we like to use the key as a way to access data directly.
In the example below, we will create a dictionary named states that
stores the population of U.S. states from the year 2000 through
2019. This data was found at a web site called Kaggle, that has
thousand of freely accessible data sets that you can use for
programming projects. A small chunk of this comma-separated data
file is shown here:

The populations.csv data file.

In our example, we use the state name (data[0]) as the dictionary

110 | Chapter 9: Lists and Dictionaries

https://www.kaggle.com/datasets

key. The dictionary value is actually a 22-component list that
consists of the state name, a state code, and then the populations
for that state between 2000 and 2019. In our program, we just
print the state name and the state’s 2019 population. Once this loop
completes, we illustrate how you can obtain all of the data for a
given state, taking the user input and using it as the dictionary key.

Python program that reads CSV file and stores data to a dictionary.

A portion of the program output is shown below. In this example,
the user entered Ohio as input and the program displayed the data
for that state.

Program output.

INTERACTIVE – Python collection types

Chapter 9: Lists and Dictionaries | 111

Four common data types to store collections of data in Python are
illustrated in the program below. Observe the code and then run the
program. Do a quick Internet search to see if you can identify the
properties that differentiate these four collections.

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=36

Chapter Review Exercises:
9.1. What is the output of the following Python code?
myList = [8, 3, 14, 5, 10]
print (len(myList))
9.2. What is the output of the following Python code?
myList = [8, 3, 14, 5, 10]
print (sum(myList))
9.3. What is the output of the following Python code?
myList = [8, 3, 14, 5, 10]
myList.clear()
print (len(myList))

112 | Chapter 9: Lists and Dictionaries

https://una.pressbooks.pub/python-textbook/?p=36

10. Chapter 10: Data Files

DATA FILES

Topics Covered:

• Data file as input
• Creating a text file
• Reading from a text file
• Data file as output

Data File as Input
In all of the programs we have written so far, the user input

has come from the keyboard. There are many scenarios, however,
when we will instead have the program input come from a data file.
We will learn to have our Python programs read data from a text
file, which is sometimes called an ASCII file. This type of file simply

Chapter 10: Data Files | 113

stores all of the data as raw text, one byte per character, using ASCII
codes.

Here are some uses and advantages of having a text file the source
for program input:

• Ease of testing: When thoroughly testing a program, you
typically need to enter several input values from the keyboard.
After making a correction to your program, you need to type
those input values in again. Each time you run your program,
you type those values over and over. By using a text file input,
you can type the input into a file one time and your input is
complete.

• Large inputs: You may need to write a program in which the
input is simply too large to practically and accurately enter it
from the keyboard.

• Import data from other systems: Many times, you can use input
text files from other sources, such as a web site or another
application’s output. Quite often, data from spreadsheets and
databases can be saved to a text file and then used as the input
to your program.

Creating a Text File
Most computer systems include a text editor, which is a program

that allows you to create, edit, save, and retrieve text files.
Windows-based computer systems provide the Notepad program,
while Macintosh computers ship with the TextEdit application. Your
Python programs, by the way, are text files. You can even use
your Idle environment to create a text file. Suppose you have a text
file named “artists.txt” that looks like this:

Bob Dylan
Elvis Presley
Chuck Berry
Jimi Hendrix
James Brown

114 | Chapter 10: Data Files

Aretha Franklin
Ray Charles

Reading from a Text File
Python makes it very easy to read data from a text file. The first

step when accessing a text file is to open the file. The open function
has two parameters, the name of the external data file and the
file access mode. The file should be stored in the same directory,
or folder, as your Python program. If the file is stored in another
location, the path to the file must accompany the file name. In our
first code example, the external data file is named “artists.txt”.

To indicate the file access mode, a single-character string is used
based on whether the file will be opened in read (r), write (w), or
append (a) mode. In this section we are reading from text files, so
we will use mode “r”. The open function returns a file handle that
must be stored in a variable. In the example below, we stored the file
handle as infile.

In our example program, we can use a for loop to read the file,
one line at a time. In the for loop, we will store each line to a
list named dataList. Once the program is done reading data from
the file the close() method of the file handle should be invoked to
disconnect the file from your application. In our program below,
we include a second for loop that simply prints out the elements
of dataList. In each iteration of the for loop, one item is retrieved
from the list and stored in artist.

infile = open(“artists.txt”, “r”)
dataList = []
for line in infile:
 dataList.append(line)
infile.close()
for artist in dataList:
 print(artist)
The output when this program is executed:

Chapter 10: Data Files | 115

A couple of observations from running the program: (1) When hitting

116 | Chapter 10: Data Files

the F5 key to run the program, it immediately executed and showed
the results with no keyboard input, and (2) the output appeared with
blank lines between each artist. When each line was read from the
file, the newline character ‘\n’ remained at the end of the string
input. Since the print function automatically adds a newline when
displaying output, that second newline created the extra space,
which gave a “double spacing effect.

A common technique to remove the newline from the end of
a string is to apply the rstrip() string method. This removes any
trailing whitespace characters at the end of the string. We will apply
this method in our next example, as well as add a counter and some
string formatting to create a table with simple headings.

To break up a string into multiple pieces based on some delimiting
character or string, we can use the split() method. The method has
a single parameter, the delimiting string, such as a space, comma, or
tab. The result of the split method is a list. The list will contain each
of the broken-up pieces of the string without the delimiting strings.
Let’s look at an example. After the split, the list pieces now contains
four strings.

Here’s the new and improved version of our program for displaying
the contents of the “artists.txt” file:

Chapter 10: Data Files | 117

The output of the program run is shown next:

INTERACTIVE – Dealing with a fruit file
Okay, now that you have seen some examples of a data file being

used as input, see if you can predict the exact output of the program
below. Look closely at the tabs in the Trinket window so you can
examine the “fruits.txt” data file.

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=38

Data File as Output

118 | Chapter 10: Data Files

https://una.pressbooks.pub/python-textbook/?p=38

As with input, there are many uses and advantages to having your
program output get sent to a text file:

• Too much output: Sometimes your program will produce so
much output that it is difficult to view on the screen as it
scrolls on by. Saving the output to a file allows you to view it at
your leisure.

• Have permanent record: When you’re done running your code
and you shut down Python, all of your program output
disappears. If you would like to store the results of your
program runs permanently, you could store that output to a
file.

• Export program output for various uses: Once your program
output is saved as a text file, you can then open that file with
other software, such as a word processor, spreadsheet,
statistical tool, etc.

When your program is going to create an output file, it must first
use the open() function to create a file handle, using the “w”
parameter to indicate you will be writing to the file. If you use write
mode and the external data file already exists, it will be overwritten,
and the former file contents will be lost. The append (a) mode is
used if you want your program to just tack data onto the end of an
existing file. If that external data file does not exist in append mode,
it will be created.

The write method is used to send a string parameter to a text
file. The program below will open a file named “test.txt” in the write
mode. It then writes two strings to that file and closes the file.

dataFile = open(“test.txt”, “w”)
dataFile.write(“CS101”)
dataFile.write(“Rocks!”)
dataFile.close()
The program output:

Chapter 10: Data Files | 119

Since this program had no print statements in it, there was no
screen output from the program. When you hit the F5 key to run the
program, you will see the >>> prompt. This is a little disconcerting
at first. To evaluate our program, though, we just need to use a
text editor to examine the output file “test.txt”. Below, we show
the contents of this file. Differing from the print function,
the write() method does not add a newline to the end of the output.

The test.txt data file:
CS101Rocks!
Problem: The Roaring Lions Run Club has hired you to develop

a running activity log application. When a runner completes a run,
she will need to input: (1) the date, (2) the distance in miles, and
the time in (3) minutes and (4) seconds. The program will compute
the average mile pace for the run. It will then output this average
mile pace to a data file, along with the four inputs. Each running
activity should get logged as a comma-separated line at the end of
the file. Having comma separated values (CSV) allows this text file to
be opened by many common programs, such as a spreadsheet.

Knowing that this single file will have data added to it over a long
period of times indicates to a programmer to use the append (a) file
access mode when the file is opened. There is a little math involved
when we calculate the average mile pace. Before the coding process
begins, we must have a plan for this computation. Let’s take a look at
a test case and go through the necessary formulas using paper and
pencil:

120 | Chapter 10: Data Files

Illustrating the Computation of Run Pace with a Test Case.

The main construct in this program is a while loop that allows the

user to log as many runs as they wish. During each iteration of the
loop, the user will provide the four input values discussed above.
The average mile pace is then computed as illustrated in the test
case. Note that we needed to import the math module in order to
use the floor() method. An outputString is created to store the five
items that will be sent to the file along with the comma separators.
This string terminates with a newline so that each logged activity
will appear on its own line. Since that instruction was so long,
Python allows you to continue it on a second line by using the
backslash (\) character. When the user has no more activities to log,
the loop concludes and the close() method for the dataFile is called.
The full program is shown next:

Chapter 10: Data Files | 121

Each time the program is executed, new run records are added to
the “activities.csv” data file. Suppose the user had already entered
a couple of runs before they ran the program with the following
interaction:

After running the program multiple times, “activities.csv” looks like
this:

3/13/2021,3.1,29,47,9:36
3/15/2021,4,38,40,9:40
3/20/2021,3.1,28,33,9:13
3/22/2021,3.1,28,9,9:05

122 | Chapter 10: Data Files

As mentioned, a CSV file is an ASCII file that can be opened or
imported into many applications. We opened “activities.csv” using
Excel and it was pretty easy to make the chart below:

In chapter 12, we will look at how you could create charts like the
one above using the Python Turtle graphics module. In chapter 13,
we examine how to turn that text-based interaction into a graphical
user interface (GUI) that you are used to using with everyday apps.
Finally, in chapter 14, we take a look at how to turn this app into a
web-based application.

Chapter Review Exercises:
10.1. Name three uses or advantages of using a text file for

program input.
10.2. Name three uses or advantages of using a text file for

program output.

Programming Projects:
10.1. A text file named “superbowl.txt” has a list that includes the

winner of every Super Bowl. The first few lines of the file look like
this:

Chapter 10: Data Files | 123

Write a Python program that will read the text file and print out
all of the winners, along with the Super Bowl number and the year.
The 1st Super Bowl occurred during the 1966 season. Display tabs
between each column and include column headings. The first few
lines of the program output should look like this:

124 | Chapter 10: Data Files

11. Chapter 11: Making
Computer Games

MAKING COMPUTER GAMES

Topics Covered:

• Random numbers
• Guess the number game
• Paper rock scissors game

In this chapter, we are going to discuss creating computer games.
Of course, playing computer games is fun and entertaining. Many
computer games also have skill-building and educational aspects,
too. Before we create our first computer game, we must first talk
about random numbers.

Random Numbers

Chapter 11: Making Computer Games | 125

If you are playing a dice game, you wouldn’t want the same dice
rolls to show up every game. In a card game, you don’t want to
be dealt the same hand every game. If you’re chasing zombies, you
wouldn’t want them to follow the same path every time. To make
games more fun, interesting and challenging, you need random,
unpredictable events to occur. Most programming languages
include a random number generation module that provides one
or more functions for producing random numbers. Not only do
random numbers play an important role in computer-based game
programs, they are also widely used to create programs that
simulate real-world situations, including business and scientific
applications.

Python provides a module named random that you can use to
create random events. To be clear, a computer’s random number
generator is not truly random. It is simply a mathematical algorithm
that will produce numbers or events that appear to be random.
Because of this face, we often call one of these functions
a pseudorandom number generator (PRNG). To use the random
number features, your first must import the random module.

Although the reference random.random() may initially seem
awkward, we are just calling the random() method from
the random module. The random method will generate a floating
point number in the range [0..1), which means a number greater
than or equal to 0 but less than 1. In the example below, we make
three calls to the random method:

126 | Chapter 11: Making Computer Games

Most programming languages will use the computer’s clock to
initialize, or seed, the random number generator. This gives you
different random numbers every time you run your program, which
is usually what you want. Occasionally, you want to reproduce the
same random numbers. In this case, you can manually give the
random number generator a seed, which is an integer, to initialize
the PRNG. Below, we seed the PRNG with the value of 100 and call
the random method twice. Then, we again seed the function with
100 and call the random method two more times. As you can see,
the numbers generated are identical.

Chapter 11: Making Computer Games | 127

If you want random integers generated instead of floating point
numbers, you can call the randint() method. It accepts two
parameters, a and b, and generates an integer in the range [a..b].
In the example below, we make three calls of randint(10,20) to
generate integers in the range [10..20]. Since this range is in square
brackets [], that means the end points are included. It’s possible that
the value 10 or 20 could be generated.

128 | Chapter 11: Making Computer Games

The randrange() method will generate random integers using three
parameters, a, b, and step. It will generate numbers in the
range [a..b) such that each number is a+k*step, where k is a non-
negative integer, and the number is less than b. Below, we generate
four multiples of 10 that are less than 50:

Here we generate three random odd numbers between 1 and 99,
inclusive:

Chapter 11: Making Computer Games | 129

Guess the Number Game
We know enough about random numbers at this point to develop

our first game. In the “Guess the Number” game, the computer will
generate a random number between 1 and 100 and the user’s job
is to guess it. Each time the user guesses, the program will notify
the user if his guess was “too high”, “too low”, or if he guessed
it correctly. Before looking at the code, first we will check out a
flowchart modeling the solution:

130 | Chapter 11: Making Computer Games

Flowchart Modeling the Guess the Number Game
We will use a Boolean variable named done as the condition of

our while loop. The program should continue looping until the user
successfully guesses the number. Our loop first asks the user for
his guess. It increments a guess count variable. It then goes through
a series of if statements that compare the user guess to
the number. When the guess is correct, done is set to True, the
program exits the loop and lets the user know how many guesses he
took. The code for the program is shown here:

Chapter 11: Making Computer Games | 131

Here is a sample run of the program:

132 | Chapter 11: Making Computer Games

Allowing Multiple Turns
Now that we have a working game, we can play all day and put

your guessing skills to the test. Each time we want to play, though,
we have to run the program again. In version 2 of the guessing game,
we will allow the user to play as many games as they wish with just
a single run of the program.

You might be thinking that all we need to do is enclose another
loop around the code that plays the game. This will work, but our
code is starting to get cluttered. A cleaner and more structured way
to do this is to convert our game code into a function. In chapter 8,
we talked about how many Python programmers will include their
main program in a main() function. By doing this, we can separate
the loop that allows multiple turns from the game itself. The only
thing left to do is make a call to main(). Be careful that you do not
indent this line since it will be the first instruction that will get
executed. You can see the code listing of this version below. After

Chapter 11: Making Computer Games | 133

each game concludes, the user will now enter either “yes” or “no”,
depending on if they would like to play again or not.

INTERACTIVE – Playing the lottery
Suppose we wanted to generate a random 3-digit number. Take

a look at the program below. That should do the trick! Make sure
you examine the code closely and understand how it works. Also,
run the program multiple times. Does it produce the same output
each time? Now, see if you can modify the program so that the user
will first input an integer, then the program will generate and print
a random number with that many digits.

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=40

Generating Random Strings
Often times, we would like to generate a random string.

The choice() method will randomly pick an item from a list. To
simulate flipping a coin three times, we create a list
named coins with the strings “Heads” and “Tails”, and then call
the choice() method passing coins as an argument.

134 | Chapter 11: Making Computer Games

https://una.pressbooks.pub/python-textbook/?p=40

Maybe you have a game that needs to pick a random superhero.
You could store superheroes in a list and use the choice() method
to randomly pick one. In the example below, we illustrate
the choice() method by calling it three times:

The sample() method can be used to randomly pick k unique items
from a list, where the list itself and the value of k are provided
as parameters to the method. The sample() method returns a list,
which can be stored as a variable. In the example below, we first
show a list of 3 randomly chosen superheroes. We also call sample
and store the list to a variable heroes. To access the individual items
from the heroes list, you could use a for loop:

Another method that comes in handy with programs that include

Chapter 11: Making Computer Games | 135

PRNG of lists is shuffle(). This method mixes up the order of the
list items, similar to shuffling a deck of cards. Below, we print
the superHeroes list, both before and after the shuffle() call:

The Paper-Rock-Scissors Game
Problem: Your friend Leo really loves to play the “Paper-Rock-

Scissors” game, but he is currently isolated and has no opponent to
play. Your job is to write a game so that Leo can play “Paper-Rock-
Scissors.” Specifically, you need to:

– Create a user-defined function named game() that will play the
game:

• Your Python program should generate and store to a variable
named computer either “paper”, “rock”, or “scissors”.

• The program should ask the user to type in either “paper”,
“rock”, or “scissors” as keyboard input and store it to a variable
named player.

• The program should use if statements to output either
“Computer wins”, “Player wins”, or “It was a tie”.

– A main() function should be created that will call the game
function. Once the game is over, the program should ask the user
if they would like to play again (yes/no). The main() function should
continue looping until the user says “no”.

– The interaction of the program should be case-insensitive and
look like this:

136 | Chapter 11: Making Computer Games

The code that implements this game is shown below. The first thing
you notice is the main() function looks the same as the one from
the Guess the Number program. The lower() method is used on
both strings that the user inputs in order to make the logic case-
insensitive. The choice method is used to randomly select the
computer’s picks. To check for a tie, we look to see
if player and computer are the same. There are three ways a player
can win this game, so a compound condition was created to test
those three cases. Finally, we can use the else statement to
conclude a loss since the player did not win or tie.

Chapter 11: Making Computer Games | 137

Chapter Review Exercises:
11.1. What Python function could generate numbers from a

random sequence such as 10, 15, 20…45, 50?
11.2. What Python function will select one item out of a list such

as [“cat”, “dog”, “fish”, “horse”, “monkey”, “snake”]?
11.3. What Python function will generate a random floating point

number between 0 and 1?
11.4. What Python function will select multiple items out of a list

such as [“cat”, “dog”, “fish”, “horse”, “monkey”, “snake”]?
11.5. What Python function, when you give it minimum and

maximum values like 3 and 10, will generate a random integer in that
range [3..10]?

11.6. What Python function will take a list like [“cat”, “dog”, “fish”,
“horse”, “monkey”, “snake”] and turn it into a new list that looks like
[“horse”, “snake”, “monkey”, “cat”, “fish”, “dog”]?

138 | Chapter 11: Making Computer Games

12. Chapter 12: Turtle
Graphics

TURTLE GRAPHICS

Topics Covered:

• Turtle graphics

Using turtle graphics is a fun way to hone your problem solving and
programming skills, as well as a writing code that can generate
graphics. It was part of the original Logo programming language
developed in 1967.

Importing the turtle module into your Python program allows you
to create simple drawings on the screen. The name turtle, or turtle
graphics, is a term in computing that means “using a relative cursor
to draw on a Cartesian plane”. The relative cursor is called the turtle.
The Logo programming language compared the drawing capabilities

Chapter 12: Turtle Graphics | 139

to that of a turtle, with a pen attached to its tail, crawling around on
the screen. If the tail was down, a line was produced, but if the tail
was raised, the movement of the turtle left no visible trace.

The graphic turtle begins at (0,0) in the x-y plane. By default,
it is facing to the right. To begin drawing, you must first import
the turtle module and then create a turtle object. The forward
command will move the turtle a given number of pixels. Let’s jump
right to an example and start exploring the options and functions
available.

140 | Chapter 12: Turtle Graphics

When you run a turtle program, it will pop up a new “Python Turtle
Graphics” window for your drawing. After importing the turtle
module, you should create a turtle object by calling
the Turtle() method. I named my turtle “Tom”, but you can create
the turtle object using any variable name.

In the sample program, the pencolor() method was used to
change the turtle to blue. Next, the shape of the turtle was changed
from a small arrowhead to an actual turtle. The forward() command
will move the turtle straight ahead by a distance of the number of
pixels passed as the argument. A pixel, short for picture element, is
one of over a million little dots that make up your screen display. A
blue line of 300 pixels was drawn left-to-right from the origin.

Tom the turtle turned 90 degrees to the left() and then changed
its color to red. After the turn, Tom is now facing upwards and
draws a vertical line of 200 pixels. The method exitonclick() will
cause the window to disappear whenever the user clicks anywhere
in the window.

In our next program, we will show two ways to draw a square. In
the first example, Tina the turtle repeats the steps “move forward
200 pixels and turn 90 degrees left” four times. A second square,
this one green, is created by using a for loop to repeat
the forward() and left() methods.

Chapter 12: Turtle Graphics | 141

When the previous program is executed, it produces the window
shown below. In order to avoid drawing a line that connected the
two squares, the penup() method was used to move 100 pixels to
the left of the black square. Before drawing the green square,
the pendown() method was called to resume drawing. The output is
shown next:

142 | Chapter 12: Turtle Graphics

This third turtle graphics program introduces several new turtle
methods:

Chapter 12: Turtle Graphics | 143

First, we show how the hideturtle() will make that shape invisible.
Next, we show how the write() method can be used to display a
string at the current turtle position. One optional parameter allows
you to change the font.

The begin_fill() and end_fill() methods can be used to change
the background color of a shape created using a concave set of
points. The fillcolor() method should be called to set the shape’s
background color. You first use the goto(x,y) method to position
the turtle to the first point of your polygon. After that, a series
of goto(x,y) calls are used to create the shape. Once
the end_fill() method is called, the interior color of the shape is
filled.

Finally, we show how the dot() method can be used to draw a small
circle on the window. With the pendown() activated, this could be
used to create a line graph. With penup() active, you could use
the dot() method to create a scatter plot.

144 | Chapter 12: Turtle Graphics

Common Turtle Graphics Methods

Chapter 12: Turtle Graphics | 145

* Note: There are hundreds of different color names that you can
use. Also, there are literally millions of colors that you can create by
using RGB or hex codes. The following web site provides a great way
to check out many of the available Turtle colors:

https://trinket.io/docs/colors

INTERACTIVE – What does the turtle say?
Check out the Turtle graphics program below, but do not run it.

Try to figure out what the output will look like first. Then, go ahead
and run it and verify if you are the turtle master or not.

One or more interactive elements has been excluded

from this version of the text. You can view them online

here: https://una.pressbooks.pub/python-textbook/?p=42

146 | Chapter 12: Turtle Graphics

https://trinket.io/docs/colors
https://una.pressbooks.pub/python-textbook/?p=42

Chapter Review Exercises:
12.1. What is a pixel and approximately how many of them appear

on a screen?
12.2. Explain what each of the following turtle graphic methods

do?

• left
• forward
• goto
• write
• penup
• endfill
• dot

Programming Projects:
12.1. Using Turtle Graphics, write a program that asks the user to

type in the following inputs:

• Number of sides
• Length of each side
• Color of the sides
• The pen size

Your program should then draw a regular polygon with those
properties.

12.2. Write a Python program to generate the graph below:

Chapter 12: Turtle Graphics | 147

148 | Chapter 12: Turtle Graphics

13. Chapter 13: Graphical User
Interfaces using Tkinter

GRAPHICAL USER INTERFACES
USING TKINTER

Topics Covered:

• Graphical user interface
• Event handlers
• Accessing the date and time

Graphical User Interfaces
All of the programs we looked at so far used a text-based user

interface (TUI). In this chapter, we learn how to develop grapical

Chapter 13: Graphical User Interfaces using Tkinter | 149

user interface (GUI) programs. In Python, a GUI program features a
window full of widgets.

A widget is a visual component such as a label, button, entry, or
image that you can place on the window. To create a GUI program,
we will need to import tkinter (pronounced “t”, “k”, “inter”), which is
a Python module that defines these GUI widgets.

Each widget is an object that has properties and responds to
events, such as a key press or a mouse click. The widget properties
can be assigned initial values when the program starts up. These
properties can also be modified while the program is running.

To code a GUI program using TK, you typically follow these four
steps:

Suppose you wanted to build the GUI window shown below. The
window consists of three widgets. We will describe each of these
widgets, as well as how we can add the cool title at the top of the
window.

After importing the tkinter widgets and creating a Tk object named
window, we use the title() method to place a caption at the top of

150 | Chapter 13: Graphical User Interfaces using Tkinter

the window. Next, we create three widgets and place each of them
on the screen.

A button is a rectangle that is usually associated with an event-
handler function that gets triggered when the user clicks on the
button. To create the button, we use the Button() constructor, or
function, to initialize the button text, background color, and width.
When calling this constructor, you need to assign it to a variable; in
this case, we stored it as myButton.

To place a widget on the screen, you use the grid() method and
provide arguments of the window object, as well as several optional
arguments. In this instance, we padded 100 pixels to the left and
right of the button and padded 20 pixels above and below the
button.

A label widget simply places text on the window. Arguments to
the Label() constructor include the window object and the text to
display. In our example, we set the optional arguments to change
the background and foreground colors of the label. We used
the grid() method to add the label to the screen using a 20 pixel
border on all four sides of the label.

An entry widget is a rectangle that allows the user to input text
using the keyboard. The Entry() constructor requires the window
object as a parameter. In our example, we set the width of the entry
to 20 characters.

The mainloop() method will “listen” for user events like keys
pressed and mouse clicks, but we haven’t defined any event
handlers yet. We will show that next. You can click on the button,
but nothing will happen.

Chapter 13: Graphical User Interfaces using Tkinter | 151

Event Handlers
As mentioned, you can change a property of a widget during

program execution. This is done by referencing the widget variable
with the property to change enclosed in square brackets []. We
illustrate this process by creating an event handler that will toggle
the background color of the button between yellow and purple.

To create an event handler, you must first define a function that
will determine which code executes when the event is triggered,
and then add the name of that function to the widget’s constructor.
In our example, we defined a function named toggleBgColor() and
added the command property when creating the button. Notice
how the parentheses are not included at the end
of command=toggleBgColor in this instruction.

In addition to demonstrating the button event handler, we included
two other examples of how you can dynamically modify a widget
property. We changed the foreground color of the button
to white and modified the text of the label to “Hooray”. When
running this modified version of the program and clicking on the
button one time, the window looks like this:

152 | Chapter 13: Graphical User Interfaces using Tkinter

Problem: The Marketing Department at a local hardware store has
asked you to develop a program for it. The managers are always
asking about the percentage markup and the profit margin for
various items in the inventory.

The program will require two inputs, the selling price and
the purchase price of an item. The markup can be computed by
subtracting the purchase price from the selling price. Other
formulas needed are:

where these quotients are expressed as percentages. The user

interface should look like this:

Chapter 13: Graphical User Interfaces using Tkinter | 153

The solution to this problem is shown below. To retrieve data from
the entries, we needed to create string variables and associate them
with the entries. We used “readonly” entries to place the three
outputs using the set() method of the string variables.

154 | Chapter 13: Graphical User Interfaces using Tkinter

You will notice in this example that the placement of the widgets
using the grid() method was done by using rows and columns. The
top row is row 0 and the leftmost column is column 0. You can
imagine the process as placing the widgets into a table or
spreadsheet. You can also allow a widget to span across multiple
columns as illustrated by the “Compute Stuff!” button in this
program

Chapter 13: Graphical User Interfaces using Tkinter | 155

Below is a sample run of the program with the store purchasing
an item for $38.50 and selling it for $47.99. Notice how the three
entry widgets that were defined to be readonly are “grayed out” on
the screen. This indicates that the keyboard user isn’t able to enter
values into those fields, although the program is allowed to modify
the text shown in the fields by using the set() method.

Accessing Date and Time
In applications that are being used to log logging activities, it is

useful to access the current date or time. Python has a module
called datetime that provides this capability. This module is quite
versatile and provides numerous ways to format the current date
and/or time. In the example below, we call the today() method and
then print the current date in a MM-DD-YYYY format. We then use
that same thisDate variable to print the current time in a HH:MM:SS

156 | Chapter 13: Graphical User Interfaces using Tkinter

XM format. A great explanation with more examples can be viewed
here:

https://www.w3schools.com/python/python_datetime.asp

Listbox Widget
The listbox widget is used to display a list of items from which a

user can select any number of items. In the example below, we first
create a list colorList, associate a string variable colorString with it,
and then call the Listbox() constructor. We use the set() method to
assign a value to colorString. The function colorChange() retrieves
the selected item and we use that index to change color of the
window background.

Sample program run:

Chapter 13: Graphical User Interfaces using Tkinter | 157

https://www.w3schools.com/python/python_datetime.asp

Radiobutton Widget
The radiobutton is a widget that is used to allow a user to select

one out of a group of choices. On the next page, we present a
program that serves as the cashier for the local bowling alley. It uses
an entry for the games bowled and three radio buttons to choose
the bowler type, one of child, adult, or senior. The cashier() function
is called on a button click. It uses the get() method to determine the
bowler type and the number of games. The label’s config() method
is used to change the label text based on the total cost. Notice
how three radiobutton widgets all use the same integer
variable bowlerType to ensure only one of them can be selected at
any given time.

158 | Chapter 13: Graphical User Interfaces using Tkinter

Sample program run:

Chapter 13: Graphical User Interfaces using Tkinter | 159

Chapter Review Exercises:
13.1. What is a widget? Describe three common widgets.

Programming Projects:
13.1. Use the Python module tkinter to create the following

graphical user interface. Do not worry about functionality at this
point. You will add that in later. Be sure to modify your program so
that it generates a match (title, colors, spacing, etc.) to this window:

• The default choices should be selected. That is, a burger with
fries and a Coke.

• To allow for multiple list boxes to be selected, add the attribute
for each one: exportselection=0

• Change the restaurant name to your own name. Notice the
font size and bold face changes.

• Notice the Entry widget at the bottom is read only.
• Use the same colors as those shown above.

13.2. Add a function to your Project 13.1 program and connect it to
the “Add to the order” button. When the user clicks this button, the
function should add the prices of the selected entrees, sides, and
drinks to the total and display that total (using a dollar sign and 2
decimal places) using the entry widget at the bottom of the screen.

13.3 Make the following changes to Project 13.2:

160 | Chapter 13: Graphical User Interfaces using Tkinter

• Include a label and an entry widget that gets the customer’s
name

• When the user clicks the “Add to the order” button, print to
the Interactive window a detailed receipt with labels
(restaurant name, receipt message, current date, current time,
customer name, entrée, side, drink, total)

• When the user clicks the “Add to the order” button, write the
following data to a comma-delimited text file named
“restaurantData.csv”: current date, current time, customer
name, entrée, side, drink, total

Chapter 13: Graphical User Interfaces using Tkinter | 161

14. Chapter 14: Web
Applications using
Server-Side Scripting

WEB APPLICATIONS
USING SERVER-SIDE SCRIPTING

Topics Covered:

• HTML
• CSS
• Server-side scripting

In chapter 13, we learned how to create a GUI to allow a more
intuitive and natural interface for the user. In this chapter we will
the web as the interface for our applications.

The Internet is a worldwide network of networks that was created
in 1969. The World Wide Web (WWW), developed in 1993, is a

162 | Chapter 14: Web Applications using Server-Side Scripting

popular application of the Internet. Others include email, file
transfer, and networked computer games.

To access the WWW, all you need is an Internet connection and
a web browser, which is a program that allows you to request and
view web pages. Popular web browsers include Chrome, Edge,
Firefox, and Safari.

When a user enters a web address, or uniform resource locator
(URL), it must first be converted to an Internet Protocol (IP) address,
since that is the mechanism that Internet routers use to forward
data traffic around the globe. A domain name server (DNS) is a
computer that will provide that translation.

Once the request reaches the web server, it fetches the requested
file from the server’s hard disk, ships it back over the Internet,
and the web browser renders, or displays the web page. This entire
7-step process is illustrated below:

Web pages are simple text (ASCII) files that are embedded with

Chapter 14: Web Applications using Server-Side Scripting | 163

special tags using HyperText Markup Language (HTML). The HTML
tags provide a structure to help organize the web page into different
sections and components. There are a lot of great free resources
on the Internet to learn more about HTML. We recommend the
following web site: https://www.w3schools.com/html

You can create web pages using a text editor on your own
computer and view them locally. Once you are ready to share them
with the world, you can publish your pages to a server for the world
to see. More about that later. There are free text editors available,
such as Notepad++, that provide color syntax highlighting to make
creating and editing files much easier.

If you are interested in changing the formatting, such as spacing,
fonts, and colors, it is recommended that you use a cascading style
sheet (CSS). A common naming scheme for many web servers is to
name your initial web page as index.html. Here is a simple example
that illustrates several common HTML tags:

Cascading Style Sheets (CSS)

164 | Chapter 14: Web Applications using Server-Side Scripting

https://www.w3schools.com/html

A Cascading Style Sheet, or CSS file, is a special file that allows you
to override the default meanings of the HTML tags that are used in
your web page. While you can modify the meanings within your web
page, it makes things a lot easier if you instead use a CSS. It not only
removes excess clutter from your basic web page, but it also lets you
change the appearance of your page without needing to modify the
page contents. In fact, if you had hundreds, or even thousands, of
web pages referencing the same CSS file, you can change the look
of your entire web site by just modifying that one CSS file. Notice
how a CSS file named styles.css is referenced in the <head> portion
of the HTML file.

The <h1> tag creates a level one heading. By default, the web
browser makes that heading black, bigger than the normal text, bold
face, and puts it on a separate line. If you wanted to add other
features to the <h1> tag, you can do that with CSS. In the example
below, we make all h1 headings green.

An image named peeps.jpg was also referenced in the web page. The
HTML, CSS, and image files must all be located in the same folder
for the page to render correctly. You can view a web page, as shown
below, by opening it in your browser.

Chapter 14: Web Applications using Server-Side Scripting | 165

Server-Side Scripting
The WWW provides more than just the delivery of static files.

Computer programs, often called scripts, can run on your computer
(client-side) or on the web server (server-side) to make the web
experience more dynamic or interactive. JavaScript is a popular
client-side scripting language. On the server side, popular
languages include PHP, Ruby, and NodeJS. Of course, Python is a
popular choice as well and that is what we will demonstrate.

Before we can learn about writing scripts that process data
coming from a web browser, we must first talk about how the user
will input that data. A web page form consists of input components
such as text boxes, check boxes, radio buttons, and drop-down
menus.

In the example below, we will begin creating a tip calculator,
which may be helpful when you are at a restaurant and trying to
determine how much of a tip to leave for your wait person. The form
will consist of three text boxes to gather input for: (1) the cost of the
meal, (2) the tip percentage, and (3) the wait person’s name.

At the beginning of the form, you must include the action, which
is the name of the Python script that will receive and process this
input data. In the example, we named the script as processtips.py.
At the end of the form, we include a submit button, which will send
the data to the server when the user clicks on the button.

166 | Chapter 14: Web Applications using Server-Side Scripting

You will notice that the web page form has the same basic structure
as your index page. In fact, in our form page, we even included the
same CSS link. By doing that, our form page has the same color and
style scheme as our index page:

Before we take a look at the server-side script, let’s see how this new
step changes the sequence of events in the client/server sequence.
Now, the server has to send the form input to the Python script
(i.e., processform.py), execute the script, and finally send the script
output back to the client to be rendered by the web browser:

Chapter 14: Web Applications using Server-Side Scripting | 167

When writing the Python server-side script, there are several things
we need to be aware of:

• The location of the Python interpreter must be included on the
first line

• We need to import two modules, cgi and cgitb
• We use the getvalue() method to retrieve data from the web

page form and store to variables. These names
(mealcost, tippercentage, waitperson) must match exactly
with the names used in the web page form

• We are actually writing a program to print a web page!
• In this example, we did some server-side data validation, which

is a fancy way of saying we made sure the user didn’t leave any
fields blank

The processtips.py script is shown below:

168 | Chapter 14: Web Applications using Server-Side Scripting

To test your server-side script, you will need to upload your files
to a web server. To do this you need to use a Secure File Transfer
Protocol (SFTP) client program. Although there are many free
versions available, we will use FileZilla. When the program opens up,
you need to enter the server domain name, the port number (22),
and your username and password on the server.

Once you are successfully authenticated, the screen will look like
that shown below. The files on the left side represent your local
computer and on the right side displays your files on the server. To
upload a file, you right-click on the local file and choose “Upload.”
Before uploading, you may have to change into a web page directory
(i.e., public_html).

Chapter 14: Web Applications using Server-Side Scripting | 169

Finally, you need to change the permissions of your Python script
so that anyone can run your application. To do this, you right-click
on the script on the remote side, choose file permissions, and then
check all the execute checkboxes as shown below:

170 | Chapter 14: Web Applications using Server-Side Scripting

Chapter Review Exercises:
14.1. Define the following terms:

• Internet
• World Wide Web
• Web browser
• SFTP
• Web server
• HTML
• CSS

Chapter 14: Web Applications using Server-Side Scripting | 171

Programming Projects:
14.1. Create a web page about yourself that is a brief biographical

sketch. Your biographical sketch should include information about
your hobbies, interests, accomplishments, and affiliations (clubs,
sororities, etc.) with appropriate hyperlinks. Hyperlinks could be to
the web site of a club you belong to or a web page describing a
hobby. You may link to social media sites where you have accounts
(Facebook, Twitter, etc.) or other web pages about yourself. Feel
free to talk about your major, courses in which you are enrolled,
or about your computer/technology background. Save your file
as index.html.

14.2. Create a style page named styles.css that defines at least 3

HTML tags. Add a link in index.html that references your new style
page.

14.3. Create a web page named fvform.html that includes a form
with the three inputs (principal, rate, years) as text boxes. Set the
action to a “futurevalue.py” and set the method to “get”. Also, make
sure you add a submit button with an appropriate value for the
caption. Include the link to your CSS page in the head section of this
web page.

14.4. Create a CGI Python script named futurevalue.py that will

read the three form values, compute the future value and total
interest, and then print those to a web page with appropriate
formatting and labels.

172 | Chapter 14: Web Applications using Server-Side Scripting

	Contents
	Chapter 1: Introduction
	Chapter 2: Python Basics
	Chapter 3: Numeric Data
	Chapter 4: Strings
	Chapter 5: Printing
	Chapter 6: Selection
	Chapter 7: Repetition
	Chapter 8: User-defined Functions
	Chapter 9: Lists and Dictionaries
	Chapter 10: Data Files
	Chapter 11: Making Computer Games
	Chapter 12: Turtle Graphics
	Chapter 13: Graphical User Interfaces using Tkinter
	Chapter 14: Web Applications using Server-Side Scripting

